Do broiler chicks possess enough growth potential to compensate long-term feed and water depravation during the neonatal period?

Similar documents
Effect of Post Hatch Feed Deprivation on Yolk-sac Utilization and Performance of Young Broiler Chickens

Nutritional Evaluation of Yam Peel Meal for Pullet Chickens: 2. Effect of Feeding Varying Levels on Sexual Maturity and Laying Performance

EDUCATION AND PRODUCTION. Layer Performance of Four Strains of Leghorn Pullets Subjected to Various Rearing Programs


Effect of EM on Growth, Egg Production and Waste Characteristics of Japanese Quail Abstract Introduction Experimental Procedures

FEED! CHOOSE THE RIGHT

Effect of Calcium Level of the Developing and Laying Ration on Hatchability of Eggs and on Viability and Growth Rate of Progeny of Young Pullets 1

C O N T E N T S 1. INTRODUCTION

This article has been written specifically for producers in Asia and the Middle East where typical

Unit C: Poultry Management. Lesson 2: Feeding, Management and Equipment for Poultry

Performance of Broiler Breeders as Affected by Body Weight During the Breeding Season 1

PARAMETERS OF THE FINAL HYBRID DOMINANT LEGHORN D 229

FEEDING CHINESE RINGNECK PHEASANTS FOR EFFICIENT REPRODUCTION. Summary *

Improving Growth and Yield of Commercial Pheasants Through Diet Alteration and Feeding Program

Relationship between hatchling length and weight on later productive performance in broilers

Influence of Delayed Access to Feed on Gastro Intestinal Tract Development in Japanese quail (Coturnix japonica)

Fattening performance, carcass and meat quality of slow and fast growing broiler strains under intensive and extensive feeding conditions

The effect of choice-feeding from 7 weeks of age on the production characteristics of laying hens

Effect of egg size and strain on growth performance of cockerel

Factors Affecting Breast Meat Yield in Turkeys

Recommended Resources: The following resources may be useful in teaching

International Journal of Science, Environment and Technology, Vol. 7, No 2, 2018,

GENETICS INTRODUCTION. G. B. Havenstein,* 2 P. R. Ferket,* J. L. Grimes,* M. A. Qureshi, and K. E. Nestor

Blue Mountain Ostrich Nutrition E-Bulletin #82 June, 2002

PRODUCTION, MODELING, AND EDUCATION

Body weight, feed coefficient and carcass characteristics of two strain quails and their reciprocal crosses

EFFECT OF LENGTH OF STORAGE OF MIXED FEED ON THE GROWTH RATE OF CHICKS

towards a more responsible antibiotics use in asian animal production: supporting digestive health with essential oil compounds TECHNICAL PAPER

The impact of scheduled cage cleaning on older hens (Gallus gallus)

Broiler production introduction. Placement of chicks

Dr. Jerry Shurson Department of Animal Science University of Minnesota

International Journal of Science, Environment and Technology, Vol. 6, No 1, 2017,

Reproduction in Turkey Hens as Influenced by Prebreeder and Breeder Protein Intake and the Environment

EFFECTS OF SEASON AND RESTRICTED FEEDING DURING REARING AND LAYING ON PRODUCTIVE AND REPRODUCTIVE PERFORMANCE OF KOEKOEK CHICKENS IN LESOTHO

Feeding Original XPC TM can help reduce Campylobacter in broilers and turkeys

2018 MN FFA Poultry CDE Exam

How Does Photostimulation Age Alter the Interaction Between Body Size and a Bonus Feeding Program During Sexual Maturation?

Growth Performance and Mortality in Hybrid Converter Turkeys Reared at High Altitude Region

Seasonal Changes Effecting thegrowth Performance of Emu Birds Reared under Intensive Farming System

EFFECTS OF BODY WEIGHT UNIFORMITY AND PRE-PEAK FEEDING PROGRAMS ON BROILER BREEDER HEN PERFORMANCE

Effect of Varying Metabolizable Energy and Crude Protein Concentrations in Diets of Pearl Gray Guinea Fowl Pullets. 2. Egg Production Performance

Relationships of incubational hatching egg characteristics to posthatch body weight and processing yield in Ross Ross 708 broilers 1,2

ISA Brown Management Guide

N. Ocak** and G. Erener Ondokuz Mayis University, Faculty of Agriculture, Department of Animal Science, Kurupelit, Samsun, Turkey

METABOLISM AND NUTRITION. The Utilization of Brewers' Dried Grains in the Diets of Chinese Ringneck Pheasant-Breeder Hens 1-2

CHAPTER 2. Effect of restricted feeding and season on the growth performance of Koekoek chickens

EDUCATION AND PRODUCTION

Feeding the Commercial Egg-Type Replacement Pullet 1

SUCCESS IS IN THE BAG

EDICT ± OF GOVERNMENT

Effect of Different Lysine and Energy Levels in Diets on Carcass Percentage of Three Strains of Broiler Duck

THE FIRST SEVEN DAYS IN A CHICK S LIFE!

TECHNICAL BULLETIN Claude Toudic Broiler Specialist June 2006

UNCLASSIFIED AD DEFENSE DOCUMENTATION CENTER FOR SCIENTIFIC AND TECHNICAL INFORMATION CAMERON STATION, ALEXANDRIA, VIRGINIA UNCLASSI[FIED

Allocating Feed to Female Broiler Breeders: Technical Bulletin #2

Quail farming. Introduction to quail farming. Housing management of quails. Advantages of quail farming. 1. Deep litter system. 2.

Local Grains and Free-Choice Feeding of Organic Layer Hens on Pasture at UBC Farm Introduction

The Effect of Vitamin E on Egg Production, Hatchability and Humoral Immune Response of Chickens. ROBERT P. TENGERDY Department of Microbiology AND

It, s A Beautiful New Day For Cat Food. A healthy skin and fur on the outside. Healthy cat on the inside.

K. KESHAVARZ2. Department of Animal Science, Cornell University, Ithaca, New York 14853

Key facts for maximum broiler performance. Changing broiler requires a change of approach

What can cause too many mid-size eggs?

EDUCATION AND PRODUCTION

Broiler Management in Hot Weather

2018 HY-LINE BROWN SCHOOL EGG LAYING COMPETITION INFORMATION BOOKLET. Proudly supported by

The effect of grouping one-day-old chicks by body weight on the uniformity of broilers

CHAPTER 3 Effect of restricted feeding and season on the carcass characteristics of Koekoek chickens

Poultry Skillathon 2017

Research shows Original XPC TM reduces Salmonella load and improves body weight and feed conversion in challenged turkeys

Comparative Development of the Small Intestine in the Turkey Poult and Pekin Duckling 1

Long-Term Selection for Body Weight in Japanese Quail Under Different Environments

THE CHICKEN GUIDE. Your Guide to Raising Chickens for Eggs, Meat and Fun

TOTAL MIXED RATIONS FOR FEEDING DAIRY HEIFERS FROM 3 TO 6 MONTHS OF AGE. H. Terui, J. L. Morrill, and J. J. Higgins 1

BREEDING AND GENETICS. Comparative Evaluation of Three Commercial Broiler Stocks in Hot Versus Temperate Climates

Ecochicks Poultry Limited

Late pregnancy nutrition the key to flock profitability

Comparative Performances of Improved Poultry Breeds under Intensive Condition in Murshidabad District of West Bengal, India

Body Weight and Egg Production Performance of Induced Moulted White Leghorn Layers*

The Effect of Oviposition Time on Egg Quality Parameters in Brown Leghorn, Oravka and Brahma Hens

Broiler Management for Birds Grown to Low Kill Weights ( lb / kg)

Performance of Naked Neck and Normal Broilers in Hot, Warm, and Temperate Climates

206 Adopted: 4 April 1984

SUMMARY OF THESIS. Chapter VIII "The place of research, its purpose, the biological material and method"

FEEDING EWES BETTER FOR INCREASED PRODUCTION AND PROFIT. Dr. Dan Morrical Department of Animal Science Iowa State University, Ames, Iowa

Wheat and Wheat By-Products for Laying Hens

Performance and carcass characteristics of Delaware chickens in comparison with broilers

Your dog a guide to feeding dogs aged 1-6

EDUCATION AND PRODUCTION

FFA Poultry Career Development Event 2000 Poultry Judging Contest Arkansas State FFA Judging Contest

Diets for African Wild Dogs ( Lycaon pictus Priby l, L. and S. Crissey

Effect of Lower Protein Level in Feed on Production Performance of Zagorje Turkey

Breeder Cobb 700. The Cobb 700 has been introduced to meet the. Ten years of research to develop Cobb 700. Breeder Performance

Efficacies of fenbendazole and albendazole in the treatment of commercial turkeys artificially infected with Ascaridia dissimilis

Effects of egg weight on hatchability, chick hatch-weight and subsequent productivity of indigenous Venda chickens in Polokwane, South Africa

FFA Poultry Career Development Event 2004 Poultry Judging District Contests

Unidentified Factors in Turkey Nutrition Affecting Hatchability and Progeny Growth 1

EGG production of turkeys is not important

METABOLISM AND NUTRITION. Performance and Physiological Parameters of Broiler Chickens Subjected to Fasting on the Neonatal Period

RECENT ADVANCES IN OSTRICH NUTRITION IN SOUTH AFRICA: EFFECT OF DIETARY ENERGY AND PROTEIN LEVEL ON THE PERFORMANCE OF GROWING OSTRICHES

Several developmental and physiological

Transcription:

South African Journal of Animal Science 2011, 41 (no 1) Do broiler chicks possess enough growth potential to compensate long-term feed and water depravation during the neonatal period? F. Abed 1, A. Karimi 1#, Gh. Sadeghi 1, M. Shivazad 2, S. Dashti 1, A. Sadeghi-Sefidmazgi 3 1 Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, 66177-14381, Kurdistan, Iran 2 Department of Animal Science, University of Tehran, Karaj, Tehran, Iran, 3 Department of Animal Science, Isfahan University of Technology, Isfahan, 84156, Iran Copyright resides with the authors in terms of the Creative Commons Attribution 2.5 South African Licence. See: http://creativecommons.org/licenses/by/2.5/za/ Condition of use: The user may copy, distribute, transmit and adapt the work, but must recognise the authors and the South African Journal of Animal Science Abstract Broiler performance to the end of the rearing period may be negatively influenced by delayed access to feed and water immediately after hatch. This study was conducted with 320 Ross 308 broiler chicks, to evaluate the influence of delayed access to feed and water during the neonatal period (0, 16, 32 and 48 h) on performance and gastrointestinal (GIT) growth. The experiment was conducted as a complete randomized design (four replicate, each with 20 chicks). The results showed that extending post-hatch deprivation of feed and water had a significant negative impact on bird performance. Broilers deprived for 48 h had lower body weights, average daily gains and feed intakes compared to the control and to a lesser extent to the other treatments. Average daily gain, daily feed intake and feed conversion ratio were mostly significantly affected by feed and water deprivation regimens during the first week of the rearing period. At marketing age, the negative impact of severe feed and water deprivation on the birds performance was substantially decreased, though birds with a 48 h delayed access to feed and water had lower average daily gains and feed intakes compared to the control. Birds mortality rate (%) was not affected by feed and water deprivation during the neonatal period. The results also indicated that the relative weights of the jejunum, ileum and liver of birds getting access to feed and water only at 48 h after arrival were significantly lower when compared to the other groups. The broiler carcass characteristics, abdominal fat percentage at 42 days of age, and gastrointestinal measurements at 21 and 42 days of age were not influenced by the different treatments. In conclusion, the results of this experiment confirmed that immediate access to feed and water after placement will ensure the optimal performance of broiler chicks at market age, and that broiler chicks do not have enough potential to fully compensate for growth retardation caused by long-term deprivation of feed and water during the neonatal period. Keywords: Broiler, fasting, feed deprivation, gastrointestinal, performance # Corresponding author: Akarimi@uok.ac.ir Introduction Body weight gains of broiler chickens have been improved substantially during the last decades. Consequently, modern broiler chicks are able to increase their weight approximately 50 fold within 40 days of hatching (Noy & Sklan, 1998; Sklan, 2003). It has been shown that relying solely on residual yolk as a nutrient source in the first 24-72 h would appear to waste valuable resources and produce less than optimum production results (Dibner et al., 1998). On the other hand, appropriate nutrition and access to feed and water close to hatching not only stimulate development of the gastrointestinal and immune system, but also increase the absorption surface area and thus enhance nutrient assimilation. This contributes to muscle growth and finally results in performance benefits well after the neonatal feeding period (Dibner et al., 1998; Noy & Sklan, 1998; Vieira & Moran, 1999). Under practical conditions, 48 or more hours could pass from hatching until placement when chicks can gain full access to feed and water. During this deprivation period, chicks may lose weight at an approximate rate of 7.8% in 48 h due in part to moisture loss as well as yolk utilization (Noy & Sklan, 1999). URL: http://www.sasas.co.za ISSN 0375-1589 (print), ISSN 222-4062 (online) Publisher: South African Society for Animal Science

34 Abed et al., 2011. S. Afr. J. Anim. Sci, vol. 41 Recent studies (Noy & Sklan, 1998; 2002; Sklan, 2003; Uni et al., 2003) demonstrated that the immediate access of birds to feed and water during this critical period increases subsequent performance in both chicks and poults via different mechanisms, including improved nutritional maturity of the bird, stimulation of yolk sac utilization, increased intestinal development and long-term metabolic effects. Little research has been undertaken on the long-term effects of feed and water deprivation during the neonatal period on broiler performance up to marketing age. On the other hand, assessment of ability of broiler chicks to compensate short-term delayed access to feed and water is critical for broiler farm managers. Therefore, the objective of this experiment was to evaluate the effects of delayed access to feed and water for up to 48 hours on broiler chick performance. Materials and Methods Three hundred and twenty day-old Ross 308 broiler chicks were obtained from a local commercial hatchery approximately two hours after clearing from the shell. The birds were of mixed sex with approximately the same ratio of males to females. The age of the broiler breeder flock was 32 weeks. The study was carried out at the Animal Science Department of the University of Kurdistan, Kurdistan, Iran. The birds were transported to the facility within 30 min. Chicks were randomly allocated to four treatments so that the mean weight of each group was approximately the same. Each treatment was replicated four times (20 chicks per pen) in a complete randomized design. The chicks were housed throughout the experiment on floor pens (1.25 1.4 m) containing wood shavings. Light was provided continuously for the first day Table 1 Composition (g/kg) and calculated analysis of basal diets Growth periods Starter Grower Finisher Ingredient Maize 572.9 603.1 660.1 Soyabean meal 347.9 299.1 246.0 Fish meal 30.0 30.0 30.0 Soyabean oil 14.6 34.8 32.7 Dicalcium phosphate 11.5 12.0 11.7 CaCo 3 11.9 9.5 9.3 Salt 3.1 3.1 3.0 Vitamin premix 1 2.5 2.5 2.5 Mineral premix 2 2.5 2.5 2.5 L-Lysine 1.7 1.9 1.4 DL-Methionine 1.5 1.5 0.7 Calculated nutrient content ME (MJ/kg) 12.18 12.87 13.08 Crude protein (g/kg) 222 203 184 Met+cys (g/kg) 8.8 8.5 7.6 Methionine (g/kg) 5.3 5.2 4.6 Lysine (g/kg) 13.3 12.1 10.2 Calcium (g/kg) 9.7 8.8 8.5 Non-phytate P (g/kg) 4.4 4.4 4.2 1 Provides per kg of diet: 9000 I.U. vitamin A; 2000 I.U. vitamin D 3 ; 18 I.U. vitamin E; 2 mg menadion; 1.8 mg thiamine; 6.6 mg riboflavin; 30 mg niacin; 3 mg pyridoxin; 15 mcg vitamin B 12 ; 100 mg D-pantothenic acid; 1 mg folic acid; 0.1 mg biotin; 500 mg choline chloride; 100 mg antioxidant. 2 Provides per kg of diet: 100 mg manganese; 84.7 mg zinc; 50 mg iron; 10 mg copper; 1 mg iodine; 0.2 mg selenium.

Abed et al., 2011, S. Afr. J. Anim. Sci, vol. 41 35 post hatching, after which a 23L : 1D lighting schedule was maintained for the duration of the experiment. Temperature was maintained between 30 and 32 C at the beginning of the rearing period and was gradually decreased every two to three days to 22 C at the end of the rearing period. In this experiment the chicks were fed a maize- soyabean meal diet ad libitum (Table 1). The feed was provided at different times posthatch, viz. immediate access to feed and water, or 16, 32 and 48 h delayed access to feed and water; assigned as treatments. Care and management of the chicks were in accordance with commercial guidelines and protocol approved by the ethical committee for animal experimentation of the University of Kurdistan. The maize-soyabean meal-based starter (up to 21 d), grower (22-35 d) and finisher (36-42 d) diets were formulated to meet or exceed the requirements of NRC (1994) for all nutrients (Table 1). The experiment was conducted for 42 d. Birds were weighed as a group on arrival. At 11, 16, 21, 28, 35 and 42 days of age, all birds were weighed by pen, and feed intake was recorded at the same time for the determination of the feed conversion ratio (FCR) per pen. Mortality was recorded daily and feed consumption data were corrected for body weight of mortality. Average body weight, daily gain and FCR were determined for each period and for the overall experiment. At 3, 21 and 42 days of age four birds from each treatment were selected randomly for assessment of gastrointestinal development. These chicks were weighed, killed by cervical dislocation and the abdominal cavity was opened. The yolk sac (at 3 d), proventriculus, gizzard, liver and small intestine were separated, and the weights of the yolk sac, liver (without gallbladder), proventriculus, pancreas and gizzard (after digesta removal) were recorded and their weights (%) relative to body weight were determined. At 42 days of age, the carcass characteristics (percentage of processed and unprocessed carcass, breast, thighs, drums, abdominal fat) of four birds, which had been used for gastrointestinal measurements, were determined. Data were analyzed according to General Linear Model (GLM) procedure of SAS (SAS institute, 2001) as a CRD experiment. Significant differences among treatments were determined at P <0.05 by Duncan s new multiple range tests. Results and Discussion Table 2 The effect of post-hatch delayed access to feed and water on live weight and average daily gain in broiler chicks Body weight (g) 0.287 38.1 38.2 37.4 38.3 0 d 6.000 138.3 c 168.9 b 177.5 b 197.6 a 11 d 9.419 245.9 c 290.0 b 301.8 ab 329.7 a 16 d 13.289 416.8 b 480.0 a 490.8 a 529.0 a 21 d 19.834 767.6 b 860.5 ab 862.5 ab 923.7 a 28 d 26.403 1257.6 b 1341.8 ab 1385.3 ab 1450.4 a 35 d 33.531 1787.1 b 1904.2 ab 1966.3 ab 1994.3 a 42 d Average daily gain (g) 0.588 8.7 c 11.6 b 12.5 b 14.4 a 1 11 d 0.817 21.5 24.2 24.9 26.4 12-16 d 1.048 32.8 36.3 37.9 39.8 17 21 d 1.690 70.2 78.1 74.3 78.9 22-28 d 1.412 70.0 69.5 74.7 75.2 29 35 d 1.430 75.7 76.4 83.0 77.7 36-42 d 0.758 17.2 b 20.0 ab 21.7 a 23.4 a 1 21 d 1.248 70.1 73.8 74.5 77.1 22-35 d 1.025 41.3 b 43.5 ab 47.2 a 47.9 a 1 42 d a-c: Mean values within a row with no common superscripts differ significantly (P <0.05).

36 Abed et al., 2011. S. Afr. J. Anim. Sci, vol. 41 The results of the present study are summarized in Tables 2 to 6. The results showed that the average body weight of the birds at 11, 16, 21, 28, 35 and 42 days of age was significantly (P <0.05) influenced by time of access to feed and water (Table 2). The chicks that had access to feed and water immediately after arrival at the experimental facility had higher body weights compared with the birds fasted for 48 h. The adverse effects of long-term feed and water deprivation (48 h) at post-hatch on the live weight of the birds were still evident at marketing age (42 d). However, the birds with shorter periods of feed and water deprivation (up to 32 h), were capable of gaining enough weight during the rest of rearing period to compensate for the early growth retardation. The results also indicated that the effects of feed and water deprivations on average daily gain of the birds were significant (P <0.05) during 1-11, 1-21 and 1-42 days of age. Feed and water deprivation also influenced average daily feed intake (P <0.05) during 1-11, 1-21 and 1-42 days of age, where chicks with immediate access to feed and water had higher feed consumption rates during these growth periods. Feed conversion ratio was only significantly (P <0.05) influenced by delayed access to feed and water on placement during the first week of age. Table 3 The effect of post-hatch delayed access to feed and water on average daily feed intake, feed conversion ratio and mortality rate in broiler chicks Average daily feed intake (g) 0.850 14.8 c 18.9 b 21.1 a 23.0 a 1-11 d 1.616 34.5 37.1 39.3 41.6 12 16 d 2.084 55.7 59.5 63.0 64.2 17-21 d 2.186 121.2 129.2 128.6 135.2 22 28 d 2.568 126.2 119.4 134.1 136.3 29-35 d 2.263 152.1 157.0 163.1 160.1 36 42 d 1.137 28.6 b 32.3 ab 35.2 a 37.0 a 1-21 d 2.085 123.7 124.3 131.4 135.8 22 35 d 1.750 78.0 b 80.1 ab 88.4 a 88.8 a 1-42 d Feed conversion ratio (g/g) 0.019 1.16 b 1.24 ab 1.30 a 1.28 a 1 11 d 0.046 1.57 1.55 1.58 1.58 12-16 d 0.033 1.69 1.64 1.67 1.62 17 21 d 0.019 1.73 1.67 1.74 1.72 22-28 d 0.025 1.80 1.72 1.80 1.82 29 35 d 0.026 2.27 2.24 2.25 2.27 36-42 d 0.026 1.43 1.41 1.51 1.47 1 21 d 0.018 1.77 1.69 1.77 1.76 22-35 d 0.012 1.89 1.84 1.88 1.86 1 42 d Mortality (%) 1.00 1.25 1.25 0.00 0.00 0 7 d 2.224 5.00 5.00 1.25 1.25 0-42 d a-b Mean values within rows with no common superscripts differ significantly (P <0.05). The results of the present experiment showed that absolute and relative weight of residual yolk sac to body weight at three days of ages were not influenced (P >0.05) by duration of feed and water deprivation (Table 4). However, as shown in Table 5, relative weight (%) of the jejunum, ileum and liver at three days of ages significantly (P <0.05) decreased by extending the duration of feed and water deprivation. The negative

Abed et al., 2011, S. Afr. J. Anim. Sci, vol. 41 37 Table 4 The effect of delayed access to feed and water on absolute and relative weight of residual yolk to body weight in broiler chicks at day 3 1.99 42.5 45.6 45.9 50.5 Body weight (g) Residual yolk 0.133 1.52 1.04 1.44 1.66 Absolute weight (g/bird) 0.007 0.037 0.023 0.031 0.033 Relative weight (g/100 g) Table 5 The effect of delayed access to feed and water on relative weight (g/100 g) of small intestinal segments to body weight in broiler chicks Duodenum 0.076 1.51 1.69 1.65 1.70 3 d 0.058 1.66 1.55 1.71 1.53 21 d 0.056 0.60 0.62 0.62 0.56 42 d Jejunum 0.162 1.48 b 2.09 a 2.47 a 2.26 a 3 d 0.204 2.54 2.54 2.38 2.74 21 d 0.070 1.23 1.13 1.26 1.17 42 d Ileum 0.095 1.11 b 1.60 a 1.61 a 1.69 a 3 d 0.185 1.77 1.78 1.86 1.86 21 d 0.072 1.06 0.89 1.00 0.90 42 d Liver 0.258 3.43 c 4.94 a 3.82 b 4.16 ab 3 d 0.204 3.46 2.82 2.72 2.97 21 d 0.120 2.36 2.21 2.42 2.22 42 d Pancreas 0.014 0.51 0.45 0.46 0.47 3 d 0.025 0.53 0.49 0.51 0.45 21 d 0.023 0.23 0.25 0.25 0.20 42 d Proventriculus 0.069 0.92 1.12 1.09 1.06 3 d 0.004 0.76 0.72 0.74 0.70 21 d 0.038 0.43 0.42 0.43 0.37 42 d Gizzard 0.422 8.92 8.67 9.24 9.23 3 d 0.239 4.67 4.60 4.94 4.58 21 d 0.132 2.23 2.31 2.30 2.27 42 d a-b - Mean values within a row and under each main effects with no common superscripts differ significantly (P <0.05).

38 Abed et al., 2011. S. Afr. J. Anim. Sci, vol. 41 effects of lag of access to feed and water on relative weight (%) of aforementioned organs disappeared at 21 and 42 days of age. The results also indicate that relative weight of the duodenum, pancreas, proventriculus and gizzard at 3, 21, and 42 d of age were not affected by feed and water deprivation. The broiler carcass relative weights (breast, thighs and drums) and abdominal fat percentage were not significantly affected by time of access to feed and water (P >0.05) at 42 days of age (Table 6). Table 6 The effect of post-hatch delayed access to feed and water on carcass characteristics (%) in broiler chicks at 42 days 1.58 87.4 85.2 86.1 85.0 Unprocessed carcass 1 1.65 73.2 71.1 72.3 70.9 Processed carcass 1.17 22.6 21.1 21.8 22.7 Breast 0.60 13.3 12.0 13.5 13.3 Thighs 0.279 9.67 9.53 9.68 9.42 Drums 0.110 1.62 1.82 1.83 1.69 Abdominal fat 1 Processed carcass equals the sum of all parts excluding abdominal cavity contents. The results of this experiment are in agreements with previous findings (Noy & Sklan, 1998; Corless & Sell, 1999; Noy & Sklan, 1999; Batal & Parsons, 2002), that the extended deprivations from feed and water during the first hours of arrival at the farm have long-term adverse effects on the performance of birds even up to market weight. Batal & Parsons (2002) have indicated that an early access to nutrients triggers the growth process and results in considerable performance benefits. The results of the present experiment also demonstrated that feed and water deprivation have adverse effects on bird performance, which is mainly mediated via retardation of feed intake rather than disturbances in feed utilization ability. Noy & Pinchasov (1993) indicated that broiler chicks with delayed access to feed and water for 24 h post-hatch had a lower feed consumption up to 40 d of age. Corless & Sell (1999) also reported that 30 and 54 h delayed placement in poults decreased cumulative 28 d feed consumption compared with 6 h delay placement. These findings are also in agreement with reports claiming that appropriate nutrition and access to feed close to hatch can accelerate growth performance of broiler chicks via different mechanisms such as gastrointestinal development, increase absorptive surface area and thus enhance nutrient assimilation, contribute to muscle growth and finally result in increased marketing performance (Uni et al., 1998; Noy & Sklan, 1999; Moore et al., 2005). Conclusions The results of this experiment indicate that providing neonatal chicks with an appropriate mix of essential macro and micro nutrients as soon as possible, is essential for development of supplying organs such as the gastrointestinal tract. Without proper development of supplying organs during earlier days of life, the growth of broiler chicks would suffer significantly from insufficient absorption of essential nutrients to meet growing requirements of demanding organs such as muscles in the most important period of lifespan with the highest potential for growth. However, the broiler chicks posed an amazing ability to recover in gastrointestinal development at 21 and 42 days of ages from the negative impact of early moderated feed and water deprivation. However, they needed more time to fully compensate from the reduced growth rate in the earlier part of the growth period due to feed and water deprivation, to a comparable level in birds subjected to a moderate deprivation period or earlier access to feed and water. Since broiler chicks need longer periods of time to fully recover from such a long-term deprivation from feed and water, it is recommended to avoid severe shortage in supplying feed and water during the neonatal period. More research is needed to

Abed et al., 2011, S. Afr. J. Anim. Sci, vol. 41 39 determine the separate effects of water or feed deprivation on the gastrointestinal development, performance and also carcass chemical composition of broiler chicks. Acknowledgements Chickens for this research were kindly supplied by Varok broiler breeder company, Sanandaj, Kurdistan, Iran. References Batal, A.B. & Parsons, C.M., 2002. Effect of fasting versus feeding Oasis after hatching on nutrient utilization in chicks. Poult. Sci. 81, 853-859. Corless, A.B. & Sell, J.L., 1999. The effects of delayed access to feed and water on the physical and functional development of the digestive system of young turkeys. Poult. Sci. 78, 1158-1169. Dibner, J., Knight, C.D. & Ivey, F.J., 1998. The feeding of neonatal poultry. Wrld s Poult. Sci. J. 14, 36-40. Moore, D.T., Ferket, P.R. & Mozdziak, P.E., 2005. Early post-hatch fasting induces satellite cell selfrenewal. Comparative Biochemistry and Physiology-Part A: Molecular & Integrative Physiology 142, 331-339. NRC, 1994. Nutrient Requirements of Poultry. 9 th rev. ed. National Academy Press, Washington D.C., USA. Noy, Y. & Pinchasov, Y., 1993. Effect of a single posthatch intubation of nutrients on subsequent early performance of broiler chicks and turkey poults. Poult. Sci. 72, 1861-1866. Noy, Y. & Sklan, D., 1998. Metabolic responses to early nutrition. J. Appl. Poult. Res. 7, 437-451. Noy, Y. & Sklan, D., 1999. Energy utilization in newly hatched chicks. Poult. Sci. 78, 1750-1756. Noy, Y. & Sklan, D., 2002. Nutrient use in chicks during the first week posthatch. Poult. Sci. 81, 391-399. SAS, 2001. Statistical Analysis Systems user's guide: Version 8.02 Edition. SAS Institute, Inc., Cary, N.C., USA Sklan, D., 2003. Fat and carbohydrate use in posthatch chicks. Poult. Sci. 82, 117-122. Uni, Z., Ganot, S. & Sklan, D., 1998. Posthatch development of mucosal function in the broiler small intestine. Poult. Sci. 77, 75-82. Uni, Z., Smirnov, A. & Sklan, D., 2003. Pre- and posthatch development of goblet cells in the broiler small intestine: effect of delayed access to feed. Poult. Sci. 82, 320-327. Vieira, S.L. & Moran Jr, E.T., 1999. Effects of egg of origin and chick post-hatch nutrition on broiler live performance and meat yields. Wrld's Poult. Sci. J. 55, 125-142.