Ëtude ultrastructurale de la mérogonie de Schellackia cf. agamae (Lankesterellidae, Apicomplexa) chez le Lézard Agama stellio.

Similar documents
Key words: Coccidia, Choleoeimeria rochalimai, fine structure, gall bladder epithelium, Hemidactylus mabouia, Brazil

The Fine Structure of the Endogenous Stages of Isospora hemidactyli Carini, 1936 in the Gecko Hemidactylus mabouia from North Brazil

Ultrastructure of Endogenous Stages of Eimeria ninakohlyakimovae Yakimoff & Rastegaieff, 1930 Emend. Levine, 1961 in Experimentally Infected Goat

Key words: Plasmodium, Kentropyx calcarata, Brazil, merogony, gametocytes, ultrastructure

Fine structure of Eimeria (S. l.) vanasi merogony stages in the intestinal mucosa of cichlid fishes

The specimens of Ameiva ameiva (Linn) were

DISEASES OF AQUATIC ORGANISMS Dis. aquat. Org.

Article available at or

Sleepy lizards Tiliqua rugosa Gray (Scincidae)

Studied tortoises, Testudo graeca, were collected from

Article available at or

Protozoan Parasites of Veterinary importance 2017

Protozoa. Apicomplexa Sarcomastigophora Ciliophora. Gregarinea Coccidia Piroplasma

Revajová, Viera, Loószová, Adrian. The Journal of Protozoology Resea Citation RightsNational Research Center for Prot

Phylum:Apicomplexa Class:Sporozoa

Malaria parasites of rodents of the Congo (Brazzaville) :

TARENTANNULARI INFECTING THE GECKO TARENTOLA ANNULARIS. Department of Zoology, Faculty of Science, University of Ain Shams, Cairo, Egypt - - -

DISEASES OF AQUATIC ORGANISMS Dis. aquat. Org.

Apicomplexans Apicomplexa Intro

Parasitenkunde. (Odocoileus virginianus ) Ultrastructure of Sarcocystis sp. from the Muscle of a White-Tailed Deer

Biology of toxoplasmosis

Apicomplexa of Intestinal Pathology

Sarcocystis heydorni, n. sp. (Apicomplexa: Protozoa) with cattle (Bos taurus) and human

Oocyst formation in the coccidian parasite Goussia carpelli

Light and electron microscopic study of the pathology and merogony of Goussia gadi (Apicomplexa: Coccidia) in the swimbladder wall

1) Most common, infectious, pathogenic animal (zoonotic) parasite of humans; estimated that 13% of humans are infected

Article available at or

The life cycle of Haemogregarina bigemina (Adeleina: Haemogregarinidae) in South African hosts

PLASMODIUM MODULE 39.1 INTRODUCTION OBJECTIVES 39.2 MALARIAL PARASITE. Notes

HISTOPATHOLOGY. Introduction:

Coccidia. Nimit Morakote, Ph.D.

FALLISIA COPEMANI N. SP. (HAEMOSPORIDIA: GARNIIDAE) FROM THE AUSTRALIAN SKINK CARLIA RHOMBOIDALIS

Redescription of Sarcocystis fusiformis sarcocysts from the water buffalo (Bubalus bubalis)

LABORATORY. The Protozoa. At the Bench

Parasitology Amoebas. Sarcodina. Mastigophora

Ahead of print online version

Dermatitis in a dog associated with an unidentified Toxoplasma gondii-like parasite

Hamed Mohamed Fayed; Mohamed Abd-Allah Shazly and Sayed Abd El-Monem

BIO Parasitology Spring 2009

A COCCIDIAN IN HAEMOGAMASID MITES; POSSIBLE VECTORS OF ELLEIPSISOMA THOMSONI FRANCA, 1912

Diagnosis, treatment and control: dealing with coccidiosis in cattle

Mesosomes are a definite event in antibiotic-treated Staphylococcus aureus ATCC 25923

AN ULTRASTRUCTURAL STUDY OF THE DEVELOPMENT OF BABESIA. E. F. BLOUIN and LYNN VAN RENSBURG, Veterinary Research Institute, Onderstepoort OliO

Joerg Kinne, Mansoor Ali*, Ulrich Wernery, and J. P. Dubey

Avian coccidiosis, a disease of major economic

REPRODUCTION OF THE CYCLE OF COCCIDIA EIMERIA ACERVULINA (TYZZER, 1929) IN CELL CULTURES OF CHICKEN KIDNEYS

Giardia and Apicomplexa. G. A. Lozano UNBC

Progressive Retinal Atrophy in the Abyssinian Cat

Coccidiosis in macropods and other species

Effect of Sodium Hypochlorite on the Oocyst Wall of Eimeria tenella as Shown by Electron Microscopy1

cyst&' appeared to be of two kinds-one smaller and Smnith "is inclined to regard these epithelial cell parasites as

Alveolar proteins stabilize cortical microtubules in Toxoplasma gondii

SCANNING electron - microscopy has

The external morphology of Oestridae parasites

Biology of Isospora spp. from Humans, Nonhuman Primates, and Domestic Animals

Infecting Anopheles stephensi With Rodent Malaria Parasites Alida Coppi & Photini Sinnis

A:Malaria (Plasmodium species) Plasmodium falciparum causes malignant tertian malaria P. malariae: causes Quartan malaria P. vivax: causes benign

Observations on Eimeria species of Dasyprocta leporina (Linnaeus, 1758) (Rodentia: Dasyproctidae) from the state of Pará, North Brazil

Malaria parasites of lemurs

A Scanning Electron Microscopic Study of Eggshell Surface Topography of Leidynema portentosae and L. appendiculatum (Nematoda: Oxyuroidea)

Hepatozoon-Like Parasite (Schizonts) in the Myocardium of the Domestic Cat

Ultrastructural and molecular identification of Sarcocystis tenella (Protozoa, Apicomplexa) in naturally infected Korean native goats

Transformed centrioles In adult and aged cat pinealocytes

Introduction. Syst Parasitol (2014) 89:83 89 DOI /s

Parasitology Departement Medical Faculty of USU

Morphological characterization of Cryptosporidium parvum life-cycle stages in an in vitro model system

The South American opossum, Didelphis marsupialis, from Brazil as another definitive host for Sarcocystis speeri Dubey and Lindsay, 1999

COCCIDIOSIS OF SANDHILL CRANES (GRUS CANADENSIS) WINTERING IN NEW MEXICO

A comparison of placental tissue in the skinks Eulamprus tympanum and E. quoyii. Yates, Lauren A.

Ultrastructure of Sarcocystis bertrami sarcocysts from a naturally infected donkey (Equus

23 Plasmodium coatneyi Eyles, Fong, Warren, Guinn, Sandosham, and Wharton, 1962

An Unidentified Sporozoan Encephalomyelitis in Sheep

ANNALES DE PARASITOLOGIE HUMAINE ET COMPARÉE Tome N 6


Arrested oocyst maturation in Plasmodium parasites. lacking type II NADH:ubiquinone dehydrogenase

Ultrastructure of Ehrlichia canis

Ralph Lainson/ +, Ilan Paperna*, Roberto D Naiff**

Lacerta viridis. Functional anatomy of the lungs of the green lizard, (Accepted 18 February 1977)

DISEASES OF AQUATIC ORGANISMS Vol. 62: , 2004 Published November 23 Dis Aquat Org

Extra-intestinal localization of Goussia sp. (Apicomplexa) oocysts in Rana dalmatina (Anura: Ranidae), and the fate of infection after metamorphosis

Light, Scanning and Transmission Electron Microscopical Study on the Oviduct of the Ostrich (Struthio

沖繩産シリケンイモリより発見されたへモグレガリンの 1 新種 Haemogregarina shirikenimori. Citation 熱帯医学 Tropical medicine 19(2). p105-

Sam R. Telford, Jr The Florida Museum of Natural History, University of Florida, Gainesville, Fl32611, USA

GARNIA KARYOLYTICA N. SP. (APICOMPLEXA: HAEMOSPORINA: GARNIIDAE), A BLOOD PARASITE OF THE BRAZILIAN LIZARD

Protozoan Parasites: Lecture 20 Apicomplexans II Coccidia Part II & Cryptosporidium Pages 28-36

Coccidiosis of Cattle

The larva is spindle-shaped, about 1 mm long and

Malaria in the Mosquito Dr. Peter Billingsley

Megía-Palma et al. Parasites & Vectors (2017) 10:470 DOI /s

Exploring simvastatin, an antihyperlipidemic drug, as a potential topical antibacterial agent

ANTICOCCIDIALS USED FOR THE THERAPY OF COCCIDIOSIS IN CHICKENS, TURKEYS AND GEESE

SUPPLEMENTARY INFORMATION

Ectoparasites Myobia musculi Radfordia affinis Radfordia ensifera

Liver and Gallbladder Morphology of the juvenile Nile crocodile, Crocodylus niloticus (Laurenti, 1768)

Criconemoides similis 1 G. W. BIRD ~

Absence of protection against Eimeria ninakohlyakimovae after primo-infection with E ovinoidalis in new-born kids

Cryptosporidium spp. Oocysts

HIGH DENSITY DIETS FOR DWARF LAYERS (1)

Development of the Intestinal Villi Associated

Morphological variability, host range and distribution of ticks. of the R hipicephalus sanguineus complex in Israel

Transcription:

Masson, Paris, 1987 Ann. Parasitol. Hum. Comp. 1987, 62, n 5, pp. 380-386. ULTRASTRUCTURAL STUDIES ON THE MEROGONY OF SCHELLACKIA CF. AGAMAE (LANKESTERELLIDAE, APICOMPLEXA) FROM THE STARRED LIZARD AGAMA STELLIO K. OSTROVSKA*, I. PAPERNA* SUMMARY. Meront stages of Schellackia cf. agamae (Laveran and Petit, 1909) were obtained from the anterior intestine mucosal epithelium of experimentally infected Agama stellio Hasselq. and Linn., 1757. Infection was recovered 5, 7, 10 and 15 days after feeding on blood and liver containing sporozoites from naturally infected A. stellio. The parasitophorous vacuole wall consisted of one bilaminate and one single unit membranes apposed at regular intervals. Following nuclear division merozoites differentiated by exogenuous budding. The ultrastructure of the meronts, the merozoite and the merogonous process conformed in all details with that of species of Eimeria. Key-words: Ultrastructure. Merogony. Schellackia cf. agamae. Parasitic in Agama stellio. Ëtude ultrastructurale de la mérogonie de Schellackia cf. agamae (Lankesterellidae, Apicomplexa) chez le Lézard Agama stellio. RÉSUMÉ. Les stades mérogoniques de Schellackia cf. agamae sont étudiés dans l épithélium de la partie antérieure de l intestin d Agama stellio infectés expérimentalement. Les différents stades ont été étudiés 5, 7, 10 et 15 jours après l ingestion, par ces Lézards, de sang et de foie d un A. stellio naturellement infecté et dont les organes contenaient des sporozoïtes. L enveloppe de la vacuole parasitophore comprend une membrane unitaire et une membrane bi-laminée accolées à intervalles réguliers. Après la division des noyaux les mérozoïtes se différencient par bourgeonnement externe. L ultrastructure des mérontes, du mérozoïte et le déroulement de la mérogonie sont conformes dans tous les détails à ceux des autres espèces d Eimeria. Mots-clés : Ultrastructure. Merogonie. Schellackia cf. agamae. Parasite d Agama stellio. * Department of Animal Sciences, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot, 76-100 Israel. Accepté le 26 mars 1987. Article available at http://www.parasite-journal.org or http://dx.doi.org/10.1051/parasite/1987625380

ULTRASTRUCTURE OF SCHELLACKIA 381 Introduction Data on merogony in Schellackia are available from light microscopy studies of 7 species (Lainson, Shaw and Ward, 1976). Rogier (1979) described merogony stages, oocysts and sporozoites of S. agamae (Laveran and Petit, 1909) obtained by experimental infection of Agama colonorum. Infection was acheived by feeding on blood and tissues containing sporozoites, taken from naturally infected agama of the same species, collected in the Central African Republic. S. cf. agamae was found to infect Agama stellio Hasselq. and Linn. in Israel. Only sporozoite stages of S. cf. agamae, in the blood and the liver, were found in naturally infected lizards (Ostrovska and Paperna, unpublished data). Merogony was studied in experimentally infected animals. This is the first electron microscopic study of merogony in a species of Schellackia. Materials and methods Juvenile sporozoite-free Agama stellio were innoculated with blood or force fed on blood and livers of co-specific adult lizards naturally infected with Schellackia cf. agamae. The lizards were kept in heated cages (24-29 C) and were autopsied 5, 7, 10 and 15 days after infection. Presence of infection was verified by light microscopic (LM) examination of Giemsa stained blood, intestine and liver smears. For transmission electron microscopy (TEM), pieces from the anterior gut were fixed in Karnowski s for 24 hours at 4 C, rinsed repeatedly in Cacodylate buffer, 0.1 M, ph 7.4 and postfixed in 1 % Osmium tetroxide, in the same buffer, for 1 hour. After rinsing in the buffer, the material was dehydrated in ethanol and embedded in Epon. Thin sections cut with diamond knife, were stained on grid with uranyl acetate and lead citrate and examined with a Joel 100 CX TEM. Results and discussion Young meronts were recovered from smears and sections of the anterior intestine of lizards autopsied 5 and 7 days post infection (p. i.). Mature, dividing meronts and merozoites were recovered in lizards sacrificed 10 and 15 days p. i. In S. agamae from Agama colonorum merogony had terminated by the 9th day p. i. (Rogier, 1977); in S. balli merogony terminated also by the 9th day p. i. (Le Bail and Landau, 1974), while in S. landauae merogony was observed in animals sacrificed 23 days p. i. (Lainson et al., 1976). Lainson et al. (1976) reported dividing merozoites of S. landauae in the liver; such extra-intestinal merozoites were not found in the liver or any other organs in either naturally or experimentally infected lizards presently studied.

382 K. OSTROVSKA, I. PAPERNA 1 Early meronts (fig. 1-4)* Stages of the merogony were located within the cells of the anterior gut epithelium. Infected cells contained 1-4 meronts (fig. 1). The wall of the parasitophorous vacuole consisted of two membranes apposed at regular intervals (fig. 2). The outer membrane was bilaminate and the inner one consisted of a single unit. Same type of parasitophorous vacuole wall occurs also in host cells infected with gamonts of S. cf. agamae Ostrovska and Paperna, unpublished). Multimembranous structure of the wall of the parasitophorus vacuole was described gamont stage infections of Toxoplasma gondii (Pelster and Piekarski, 1971), Isospora rivolta (Pelster, 1973), I. felis (Ferguson, Birch-Andersen, Hutchinson and Siims, 1980) and Sarcocystis spp. (Scholtyseck and Hilali, 1978, Entzeroth, Chobotar and Scholtyseck, 1985). The wall of the parasitophorous vacuole consisted of a single membrane in sporozoite stage infections of S. cf. agamae (Ostrovska and Paperna, unpublisaheds), of other species of Schellackia and of Lankesterella (Stehbens, 1966, Heller, 1974, Sinden and Moore, 1974, Bikeung, Barta and Desser, 1986). Single membrane parasitophorous vacuole wall is found in merogony and gamogony stage infections of Eimeria spp. (Scholtyseck, 1979). The parasitophorous vacuole contained a very dilute flocculant substance. Early meronts with a single nucleus (fig. 1), with dividing nucleus (fig. 3) or already with two nuclei (fig. 4) were bound by a single unit membrane and a thicker discontinuous subpellicular membrane (fig. 3). The areas with double membrane may represent the future budding sites of the merozoites similar to those reported from meronts of Eimeria spp. (Kelly and Hammond, 1973, Dubremetz, 1975). Nuclei had prominent nucleoli (fig. 1-4). The cytoplasm contained one to several mitochondria (fig. 4), numerous ribosomes, smooth, and rough endoplasmic reticulum, a variable number of food vacuoles and electron lucent vacuoles, apparently lipid vacuoles exhausted of their content (fig. 1-4). * Abbreviation to figures: A: Apical complex; G: centrocone; ED: electron dense vesicle; er: endoplasmic reticulum; F: food vacuole; H: host cell; L: lipid vacuole; M: mitochondria; Mz: merozoites; mn: micronemes; N: nucleus; pm: merozoite primordium; Pv: Parasitophorous vacuole; R: rhoptries; RB: residual body: S: multilaminated inclusions. Planche1 Fig. 1. Mucosal epithelial cell infected by 4 young meronts ( x 7,500). Fig. 2. Wall of the parasitophorous vacuole ( x 32,000). Fig. 3. Meront with dividing nucleus, showing spindle (arrows) and one centrocone ( x 9,900). Fig. 4. Meront with two nuclei ( x 9,900). Fig. S and 6. Merozoites budding into a subpellicular inclusion (arrows) ( x 14,850 and x 22,700).

384 K. OSTROVSKA, I. PAPERNA 2 Merogogy and Merozoites (fig. 5-11) In the mature meront the numerous nuclei were arranged at the periphery as well as inside the cells. The nuclei, like those of the early stage meront, had prominent nucleoli (fig. 7) (and by this are distinguishable from nuclei of microgamonts which lack distinct nucleolus, Ostrovska and Paperna, unpublished). The general process of merozoite formation was by exogenesis, merozoites developed, like in most species of Eimeria (Hope, 1974, Dubremetz, 1975, Dubremetz and Eisner, 1979), at the exterior or infolded periphery of the meront (fig. 7). Primordia of merozoites were seen forming on the surface of the meront (fig. 7). Some primordia of merozoites, however, were seen budding into a subpellicular inclusion, as if they were developing by endogenesis (fig. 5, 6). Subpellicular budding concurrently with exogenous budding was reported in E. tenella, there, some of the subpellicular inclusions were in fact, deep invaginations of the meront surface (Hope, 1974). Merogony by endogenesis is rare among species of Eimeria (Roberts, Hammond, Anderson and Speer, 1970, Sampson and Hammond, 1972), it occurs in Toxoplasma (Vivier, 1970), in Sarcocystis (Cerna and Senaud, 1977), and in piscine eimerians (Paterson and Desser, 1981). Light microscopic studies revealed a progeny of up to 32 merozoites per meront, same number as reported by Rogier (1977) for S. agamae. The budding merozoites were bound by two bilaminated membranes, while the residual body of the meront was bound by single bilaminated membrane and contained large one or two membrane bound electron dense bodies (fig. 8, 9). Similar organelles have been observed in immature merozoites of some species of Eimeria and were regarded as either rhoptry analgens (précurseur des rhopries), or anterior refractile bodies (Sampson and Hammond, 1972, Danford and Hammond, 1972, Melborn, Senaud and Scholtyseck, 1973, Dubremetz, 1975). In more developed merozoites, rhoptries as well as micronemes appeared and the apical complex became distinct (fig. 10, 11). In some of these merozoites, however, the large round electron dense vesicle was still retained (fig. 10). The residual body of the meront contained some lipid vacuoles and multilaminated inclusions indicative of degenerative changes (fig. 9). Planche II Fig. 7. Mature meronts with merozoites budding by exogenesis, elevation with adjacent subpellicular membranes (arrow) marks vestige of forming merozoite ( x 9,000). Fig. 8. Premature merozoites still attached to the meront residual body ( x 5,200). Fig. 9. Merozoites in their final stage of differentiation bud off the meronts residual body ( x 7,500). Fig. 10. Anterior end of detached merozoite with apical complex and large electron dense vesicle ( x 22,000). Fig. 11. Anterior end of free merozoites with developed rhoptries (x 22,200).

386 K. OSTROVSKA, I. PAPERNA AKNOWLEDGMENT. This research was supported by the S. A. Schonbrunn research endowment fund. REFERENCES Cerna Z., Senaud J. : Sur un type nouveau de multiplication asexuée d une Sarcosporidie, dans le foie de la souris. C. R. Acad. Sci. (D) (Paris), 1977, 285, 347-349. Danforth H. D., Hammond D. M. : Stages of merogony in multinucleate merozoites of Eimeria magna. J. Protozool., 1972, 19, 454-457. Ddbremetz J. F. : La génèse des mérozoïtes chez la coccidie Eimeria necatrix : étude ultrastructurale. J. Protozool., 1975, 22, 71-84. Dubremetz J. F., Elsner Y. Y. : Ultrastructural study of schizogony of Eimeria bovis in cell cultures. J. Protozool., 1979, 26, 367-376. Entzeroth R., Chobotar B., Scholtyseck E. : Electron microscopic study of gamogony of Sarcocystis muris (Protozoa, Apicomplexe) in the small intestine of cats (Felis catus). Protistologica, 1985, 21, 399-408. Ferguson D. J. P., Birch-Andersen A., Hutchinson W. M., Sum J. Chr. : Ultrastructural observations on microgametogenesis and the structure of the microgamete of Isospora felis. Acta Pathol. Microbiol. Scand., Sect. B, 1980, 88, 151-159. H eller G. : The fine structure of Lankeserella sp. sporozoites parasitic in the frog Rana pipiens. Acta Vet. Acad. Sci. Hungar., 1974, 24, 151-157. Hoppe G. : La formation des mérozoïtes chez la coccidie Eimeria tenelta (Railliet et Lucert, 1891). Étude au microscope électronique. Protistologica, 1974, 10, 185-205. K elly G. L., Hammond D. M. : Fine structural aspects of early development of Eimeria ninakohlyakimovae in cultured cells. Z. Parasitenkd., 1972, 38, 271-284. Lainson R., Show J. J., Ward R. D. : Schellackia landauae sp. nov. (Eimeriorina: Lankesterellidae) in the Brazilian lizard Polychrus marmoratus (Iguanidae): experimental transmission by Culex pipiens fatigans. Parasitology, 1976, 72, 225-243. Le Bail O., Landau I. : Description et cycle biologique expérimental de Schellackia balli n. sp. (Lankesterellidae) parasite de Crapauds de Guyane. Ann. Parasitol. Hum. Comp., 1974, 49, 663-668. Melhorn H., Senaud J., Scholtyseck E. : La schizogonie chez Eimeria falciformis (Eimer, 1870) Coccidie, Eimeriidae parasite de l épithélium intestinal de la souris (Mus musculus) : étude au microscope électronique des mérozoïtes et leur développement au cours d infections expérimentales. Protistologica, 1973, 9, 269-271. Paterson W. B., Desser S. S. : An ultrastructural study of Eimeria iroguoina Molnar & Fernando, 1974 in experimentally infected fathead minnows (Pimephatus promelas, Cyprinidae). 3. Merogony. J. Protozool., 1981, 28, 302-308. P elster B. : Vergleichende electronenmicroskopische Untersuchungen an den Makrogameten von Isospora felis und I. rivolta. Z. Parasitenkd., 1973, 41, 29-46. Pelster B., Piekarski G. : Electronenmikroskopische Analyse der Microgametenentwicklung bei Toxoplasma gondii. Z. Parasitenkd., 1971, 37, 267-277. Roberts W. L., Hammond D. M., Anderson L. C., Speer C. A. : Ultrastructural study of schizogony in Eimeria callospermophilli. J. Protozool., 1970, 17, 584-592. Rogier E. : Description et cycle biologique de Schellackia agamae (Laveran et Petitt, 1909), Lankesterellidae parasite d agames de République Centre-Africaine. Protistologica, 1977, 13, 9-13. Sampson J. R., Hammond D. M. : Fine structural aspects of development of Eimeria alabamensis schizonts in cell cultures. J. Parasitol., 1972, 58, 311-322. Scholtyseck E. : Fine structure of parasitic protozoa. Springer Verlag, Berlin, Heidelberg, New York, 1979, 206 p. Scholtyseck E., H ilali M. : Ultrastructural study of the sexual stages of Sarcocystis fusiformis (Raillet, 1897) in domestic cat. Z. Parasitenkd., 1978, 56, 205-209. Sinden R. E., Moore J. : Fine structure of the sporozoite of Schellackia occidentalis. J. Parasitol., 1974, 60, 666-673. Stehbens W. E. : The ultrastructure of Lankesterella hylae. J. Protozool., 1966, 13, 63-73. Tse B., Barta J. R., Desser S. S. : Comparative ultrastrutural features of the sporozoite of Lankesterella minima (Apicomplexa) in its anuran host and Leech vector. Can. J. Zool., 1986, 64, 2344-2347. Vivier E. : Observations nouvelles sur la reproduction asexuée de Toxoplasma gondii et considération sur la notion d endogenèse. C. R. Acad. Sci. (D) (Paris), 1970, 271, 2121-2126.