A review on Sero diversity and antimicrobial resistance patterns of Shigella species in Africa, Asia and South America,

Similar documents
Epidemiology of Shigella species isolated from diarrheal children and drawing their antibiotic resistance pattern

Serodiversity and Antimicrobial Resistance Pattern of Shigella Isolates at Gondar University Teaching Hospital, Northwest Ethiopia

Ahangarzadeh Rezaee M., et al., J Anal Res Clin Med, 2014, 2(3): doi: /jarcm ,

PILOT STUDY OF THE ANTIMICROBIAL SUSCEPTIBILITY OF SHIGELLA IN NEW ZEALAND IN 1996

Species Distribution' and Antibiotic Resistance of Shigella Isolates in an Urban Community in Malaysia

DECREASED SUSCEPTIBILITY TO ANTIMICROBIALS AMONG SHIGELLA FLEXNERI ISOLATES IN MANIPAL, SOUTH INDIA A 5 YEAR HOSPITAL BASED STUDY

Antimicrobial Susceptibility Patterns of Salmonella Typhi From Kigali,

Antibiotic Susceptibility Pattern of Vibrio cholerae Causing Diarrohea Outbreaks in Bidar, North Karnataka, India

Surveillance of Antimicrobial Susceptibility Patterns among Shigella Species Isolated in China during the 7-Year Period of

Evaluation of antimicrobial activity of Salmonella species from various antibiotic

Antibiotic therapy of acute gastroenteritis

Prevalence of Shigella, Salmonella Mulatu G. et al 101

Prevalence of nontyphoidal Salmonella serotypes and the antimicrobial resistance in pediatric patients in Najran Region, Saudi Arabia

Antibiotic Reference Laboratory, Institute of Environmental Science and Research Limited (ESR); August 2017

Antimicrobial resistance in Shigella - rapid increase & widening of spectrum in Andaman Islands, India

Frequency and antimicrobial susceptibility of Shigella species isolated in Children Medical Center Hospital, Tehran, Iran,

Prevalence of Shigella Serogroups and Their Antimicrobial Resistance Patterns in Southern Trinidad

Antibiotic resistance pattern of bacterial enteritis among hospitalized children in Ardabil: a single center experience

Prevalence and Multiple Drug Resistance of Shigella sonnei Isolated from Diarrheal Stool of Children

Isolation & antimicrobial susceptibility of Shigella from patients with acute gastroenteritis in western Nepal

Key words: Campylobacter, diarrhea, MIC, drug resistance, erythromycin

Shigella Serogroups, Entro-Hemoragic E. coli and Their Antibiogram Pattern Among Food Handlers in Food-Handling Establishments in Southern Ethiopia

Antibiotic resistance of bacteria along the food chain: A global challenge for food safety

Bacterial Etiology of Acute Diarrhea in Children Under Five Years of Age

Please distribute a copy of this information to each provider in your organization.

EPIDEMIOLOGY OF ANTIMICROBIAL RESISTANCE IN SALMONELLA ISOLATED FROM PORK, CHICKEN MEAT AND HUMANS IN THAILAND

Int.J.Curr.Microbiol.App.Sci (2017) 6(3):

BACTERIAL ENTERIC PATHOGENS IN CHILDREN WITH ACUTE DYSENTERY IN THAILAND: INCREASING IMPORTANCE OF QUINOLONE-RESISTANT CAMPYLOBACTER

RETROSPECTIVE STUDY OF GRAM NEGATIVE BACILLI ISOLATES AMONG DIFFERENT CLINICAL SAMPLES FROM A DIAGNOSTIC CENTER OF KANPUR

A retrospective analysis of urine culture results issued by the microbiology department, Teaching Hospital, Karapitiya

Tesfahun Lamboro, Tsige Ketema and Ketema Bacha. Department of Biology, Jimma University,College of Natural Sciences, Jimma, Ethiopia

Antimicrobial susceptibility of Salmonella, 2016

Study of Bacteriological Profile of Corneal Ulcers in Patients Attending VIMS, Ballari, India

Aerobic bacterial infections in a burns unit of Sassoon General Hospital, Pune

Salmonella gastroenteritis in children (clinical characteristics and antibiotic susceptibility): comparison of the years and

Antibiotic sensitivity pattern of common bacterial pathogens in NICU and neonatal ward in Hamedan province of Iran

Magnitude of drug resistant shigellosis in Nepalese patients

Antimicrobial susceptibility of Salmonella, 2015

Antimicrobial Resistance and Plasmid Profile Analysis of Clinically Isolated Shigella dysenteriae in Azad Kashmir, Pakistan*

Detection and Quantitation of the Etiologic Agents of Ventilator Associated Pneumonia in Endotracheal Tube Aspirates From Patients in Iran

ANTIMICROBIAL RESISTANCE IN KENYA; What Surveillance tells us

Antimicrobial Susceptibility Pattern of Salmonella Isolates at Tertiary Care Hospital, Ahmedabad, India

Study of antibiotic sensitivity pattern of salmonella typhi in tertiary care centre

PROTOCOL for serotyping and antimicrobial susceptibility testing of Salmonella test strains

Aerobic Bacterial Profile and Antimicrobial Susceptibility Pattern of Pus Isolates in a Tertiary Care Hospital in Hadoti Region

Study of First Line Antibiotics in Lower Respiratory Tract Infections in Children

Palpasa Kansakar, Geeta Shakya, Nisha Rijal, Basudha Shrestha

Antibiotic Symposium National Institute of Animal Agriculture Atlanta, Georgia

Bacterial Pathogens in Urinary Tract Infection and Antibiotic Susceptibility Pattern from a Teaching Hospital, Bengaluru, India

Awareness, knowledge and practices about mosquito borne diseases in patients of tertiary care hospital in Navi Mumbai

Presenter: Ombeva Malande. Red Cross Children's Hospital Paed ID /University of Cape Town Friday 6 November 2015: Session:- Paediatric ID Update

Aerobic bacteriological profile of urinary tract infections in a tertiary care hospital

The Menace of Typhoid / Paratyphoid Fever The Abuja Experience: A 5 Year Retrospective Study

CambodiaCase Study. An integrated surveillance study of AMR in Salmonella subspp, Campylobacter spp, Escherichia coli and Enterococcus spp in poultry

11-ID-10. Committee: Infectious Disease. Title: Creation of a National Campylobacteriosis Case Definition

Antimicrobial Resistance: Do we know everything? Dr. Sid Thakur Assistant Professor Swine Health & Production CVM, NCSU

Infection Pattern, Etiological Agents And Their Antimicrobial Resistance At A Tertiary Care Hospital In Moshi, Tanzania

Key words: Urinary tract infection, Antibiotic resistance, E.coli.

Dr Nata Menabde Executive Director World Health Organization Office at the United Nations Global action plan on antimicrobial resistance

DANMAP Danish Integrated Antimicrobial Resistance Monitoring and Research Programme

BACTERIOLOGICAL PROFILE AND ANTIMICROBIAL SUSCEPTIBILITY PATTERN OF ISOLATES OF NEONATAL SEPTICEMIA IN A TERTIARY CARE HOSPITAL

Clinical and Economic Impact of Urinary Tract Infections Caused by Escherichia coli Resistant Isolates

Diarrheal diseases remain a major health

Typhoid fever - priorities for research and development of new treatments

RECOVERY OF SALMONELLA USING A COMBINATION OF SELECTIVE ENRICHMENT MEDIA AND ANTIMICROBIAL RESISTANCE OF ISOLATES IN MEAT IN THAILAND

Ophthalmology Research: An International Journal 2(6): , 2014, Article no. OR SCIENCEDOMAIN international

Lack of Change in Susceptibility of Pseudomonas aeruginosa in a Pediatric Hospital Despite Marked Changes in Antibiotic Utilization

Drd. OBADĂ MIHAI DORU. PhD THESIS ABSTRACT

Molecular Epidemiology of Enteric infections in Eastern Africa

Downloaded from journal.bums.ac.ir at 21:43 IRDT on Friday March 22nd 2019 * '+ ." 7 /0 4]G 36 ^) -* A=> 1 ()< $*?=& 'K * '( A ($ Z)$ _

Prevalence of Metallo-Beta-Lactamase Producing Pseudomonas aeruginosa and its antibiogram in a tertiary care centre

Project Summary. Impact of Feeding Neomycin on the Emergence of Antibiotic Resistance in E. coli O157:H7 and Commensal Organisms

Monitoring gonococcal antimicrobial susceptibility

Epidemiology of campylobacteriosis in a cohort of rural population near Calcutta

Multidrug-Resistant Salmonella enterica in the Democratic Republic of the Congo (DRC)

Ciprofloxacin and azithromycin resistance of Campylobacter spp isolated from international travellers,

Received:06 th June-2012 Revised: 10 th June-2012 Accepted: 13 th June-2012 Research article

Community-Acquired Urinary Tract Infection. (Etiology and Bacterial Susceptibility)

Multiple drug resistance pattern in Urinary Tract Infection patients in Aligarh

Zoonoses in food and feed

International Journal of Academic Research (ISSN: ) July 2013, pp: 35-41

Trends en voorkomen van resistenties bij Salmonella, Campylobacter en E. coli geïsoleerd uit de voeding

Characterization of Multiple Antimicrobial Resistant Shigella sonnei Isolated from Diarrhoeal Patients in Azad Kashmir, Pakistan*

Antimicrobial resistance at different levels of health-care services in Nepal

Department of Biology, College of Natural Sciences, Jimma University, P.O. Box 378, 1000 Jimma, Ethiopia

Tandan, Meera; Duane, Sinead; Vellinga, Akke.

Drug Utilization Evalauation of Antibiotics in Dh Uttarakashi

Campylobacter spp among Children with acute diarrhea attending Mulago hospital in Kampala - Uganda

Irrational use of antimicrobial agents often

Isolation, identification and antimicrobial susceptibility pattern of uropathogens isolated at a tertiary care centre

Diarrheal Illness and Childhood Mortality: Filling Up the Half-Empty Glass. Eric Mintz, MD, MPH

Interventions: Disease Prevention and Antimicrobial Use Reduction - Overview

ANTIMICROBIAL RESISTANCE IN COMMENSAL E. COLI FROM LIVESTOCK IN BELGIUM: Veterinary Epidemiology

Accepted Manuscript Title: Author(s): Reference: To appear in: ISSN: Received date: Revised date: Accepted date:

Pushpa Bhawan Mal 1, Kauser Jabeen 1*, Joveria Farooqi 1, Magnus Unemo 2 and Erum Khan 1

Reprinted in the IVIS website with the permission of the meeting organizers

CRISPR Diversity and Antimicrobial Susceptibility of Salmonella Isolates from Dairy Farm Environments in Texas

Isolation and Antibiotic Susceptibility of Salmonella, Shigella, and Campylobacter from Acute Enteric Infections in Egypt

Mechanism of antimicrobial resistance in Shigella isolates

ANTIBIOTIC RESISTANCE OF ENTEROPATHOGENIC ESCHERICHIA COLI ISOLATED FROM DIARRHEAL CHILDREN IN MILAD HOSPITAL DURING

Transcription:

DOI 10.1186/s13104-016-2236-7 BMC Research Notes RESEARCH ARTICLE Open Access A review on Sero diversity and antimicrobial resistance patterns of Shigella species in Africa, Asia and South America, 2001 2014 Atsebaha Gebrekidan Kahsay * and Saravanan Muthupandian Abstract Background: Shigella, gram negative bacterium, is responsible for Shigellosis/bacillary dysentery. It is a global concern although it predominates in developing countries. These are Shigella dysenteriae, Shigella flexneri, Shigella boydii and Shigella sonnei. Drug resistance by Shigella species is another headache of the world. Therefore; this study aimed to review distribution of Shigella Serogroups and their antimicrobial patterns carried out in Africa, Asia and South America. Methods: A literature search was performed to identify published studies between January 2001 and December 2014. Published studies were identified using an initial search of the MEDLINE/Index Medicus Database, PubMed, Project Management Consultant, Google Scholar, Science Direct, BioMed Central and Index Copernicus. Results: Shigella flexneri was isolated predominately from seven studies in four African countries and eight studies in five Asian countries. The countries in which eligible studies carried out were Ethiopia, Kenya, Eritrea and Ghana in Africa and Pakistan, Iran, China, Nepal and India in Asia. S. sonnei was isolated predominately from one study in Africa, four in Asia and two South America. The countries in which eligible studies carried out were Ethiopia from Africa, Thailand, Vietnam and Iran from Asia and Chile and Trinidad from South America. S. dysentery was also reported majorly from one eligible study in Egypt and one in Nepal. S. boydii did not score highest prevalence in any one of the eligible studies. Three studies from Africa, five from Asia and one from South America were reviewed for antimicrobial resistance patterns of Shigella Serogroups. In all the regions, Ampicillin developed highly resistance to almost all the Serogroups of Shigella whereas all the strains were sensitive to Ciprofloxacin. Conclusion: The incidence of Shigella Serogroups in the selected three regions is different. The domination of S. flexneri is observed in Africa and Asia although S. sonnei in South America is dominant. Shigella Serogroups are becoming resistance to the commonly prescribed antimicrobial drugs in developing countries. Keywords: Serogroups of Shigella, Antimicrobial resistance Background Shigella, a group of Gram-negative, non-spore forming and rod shaped bacterium, is the causative agent of shigellosis (or bacillary dysentery). Shigella Serogroups are *Correspondence: atseba_mu@yahoo.com Department of Medical Microbiology and Immunology, Institute of Biomedical Sciences, College of Health Sciences, Mekelle University, Mekelle, Tigray, Ethiopia considered to be highly infectious due to their low infectious dose (10 100 organisms) [1]. Shigella is primarily transmitted through the fecal-oral route; therefore, it is still a main global public health threat, particularly in developing countries due to poor sanitation conditions [2]. Shigella bacteria are serologically grouped into four species named as Shigella dysenteriae, Shigella flexneri, Shigella boydii and Shigella sonnei. However Serogroups of Shigella bacteria have similar property of pathogenesis 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/ publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Page 2 of 6 and epidemiologically they have peculiar characteristics. S. flexneri found predominantly in developing world, while S. sonnei is the most common species found in the industrialized countries [3]. The severity of Serogroups of Shigella is different one from the other that S. sonnei and S. flexneri cause mild infection whereas S. boydii and S. dysenteriae cause severe and most serious infection respectively [2]. The infection caused by S. sonnei and S. boydii lasts with short duration and mostly found in industrialized countries. The distribution of Shigella sonnei in the United States of America is 74 79 % [4] and 61 % in Europe [5]. The emerging of multi drug resistance is becoming a serious problem in the treatment of shigellosis. An increment of multidrug resistance to shigellosis is equivalent to a widespread uncontrolled use of antibiotics in developing countries. This emergency of drug resistance calls for the rational use of effective drugs and underscores the need for alternative drugs to treat infections caused by resistant strains [6]. Shigella is more associated with low socio economic status and poor sanitation of under developed countries [2]. Researches were done by different researchers concerning the Serogroups and antimicrobial susceptibility patterns of Shigella in Africa, Asia and South America as a result this study aimed in reviewing the distribution of Serogroups of Shigella and the resistance patterns of antimicrobial drugs which were conducted in the developing countries in the past 14 years. Methods Search strategy and selection criteria A literature search was performed to identify published studies between January 2001 and December 2014. Published studies were identified using an initial search of the MEDLINE/Index Medicus Database, PubMed, PMC, Google Scholar, Science Direct, BioMed Central and Index Copernicus. The study initially screened all unique publications for eligibility based on the relevancy of the title and then screened the full manuscripts for inclusion and exclusion criteria. The following Keywords were used to search all the published papers from the above engines. These were Prevalence, isolation, Sero diversity, occurrence, epidemiology, Magnitude, burden, estimation, distribution, diversity and antimicrobial resistance patterns of Shigella. Studies conducted before 2001 and researches which concerned only prevalence and antimicrobial susceptibility patterns of Shigella were excluded. Data extraction The first author, country, year of publication, setting, sample size, children and all age, sample source, prevalence and distribution of Serogroups of Shigella were extracted from the eligible studies. Ampicillin, Tetracycline, Chloramphenicol, Ciprofloxacin, Cotrimoxazole, Nalidixic acid and Gentamicin resistance patterns of the four Sero groups of Shigella were extracted from the eligible studies. Studies were included in the review if they fulfill the following criteria: Isolation and identifying of Shigella from stool samples should be based on standard bacteriological methods and Shigella Serogroups were detected serologically using slide agglutination and antimicrobial resistance patterns of Shigella Serogroups should be based on Clinical Standards Laboratory Institute guidelines using disc diffusion methods. Full text articles studied in Africa, Asia, and South America and published in English everywhere in the globe were included. Results Majority of the reviewed articles were Hospital based studies. About 40 % of the study participants were children under 15 years old. Stool samples were the source of specimens in all the eligible studies. A total of 69,849 stool specimens data were collected. Eighteen (72 %) of the eligible studies were published before 2010 and the rest seven were published from 2010 to 2014 (Table 1). Shigella flexneri was isolated predominately from Ethiopia [7, 8, 14], Kenya [9, 13], Eritrea [11], Ghana [12], Pakistan [16], Iran [17, 22], China [19, 27], Nepal [23, 28], India [29] and Brazil [31] (Table 1). S. sonnei was also isolated predominately from Ethiopia [13], Thailand [18], Vietnam [24] and Iran [25, 26], Chile [21] and Trinidad [30]. S. dysentery was also reported majorly from Egypt [10] and Nepal [15]. S. boydii did not score highest prevalence in any one of the eligible studies (Table 1). Shigella sonnei was not isolated from studies conducted in Ethiopia [14] and Nepal [20]. S. dysentery was not isolated from the studies conducted in Ethiopia [14], Thailand [18], China [19, 27], Chile [21], Brazil [31], and Vietnam [24]. S. boydii was not also isolated from the studies conducted in Ethiopia [14], Eritrea [11], Thailand [18], China [19, 27], Chile [21] and Brazil [31] (Table 1). Nine studies were eligible for antimicrobial susceptibility testing [AST] of Shigella Serogroups. Those are three from Africa, five from Asia and one from South America. In all the regions, Ampicillin developed highly resistance to almost all the Serogroups of Shigella whereas all the strains were sensitive to Ciprofloxacin. Hundred percent of isolates revealed by Orrette in South America were resistance for Ampicillin but 100 % sensitive to

Page 3 of 6 Table 1 Characteristics of appropriate studies and distribution of Serogroups of Shigella reviewed from Africa, Asia and South America from 2001 to 2014 First author Country Pub. year Setting Age group Sample sources Sample size Shig. Pos. (N) Shigella Serogroups Pos. N (%) A B C D Mache [8] Ethiopia 2001 Hosp & HC Children Stool 384 77 23 (29.9) 31 (40.3) 15 (19.5) 8 (10.4) Brooks [9] Kenya 2003 Laboratory All ages Stool 2374 198 80 (40.4) 97 (49) 13 (6.6) 8 (4) Abu-Elyazeed [10] Egypt 2004 Surveillance Children Stool 696 131 74 (56.5) 30 (22.9) 26 (19.8) 1 (0.8) Chompook [18] Thailand 2005 Population All ages Stool 6536 146 24 (16.4) 122 (83.6) Wang [19] China 2005 Community All ages Stool 10,105 331 306 (93) 25 (7) Bhattacharya [20] Nepal 2005 Hospital All ages Stool 1396 53 39 (73.6) 12 (22.6) 2 (3.8) Fulla [21] Chile 2005 HC Children Stool 4080 178 77 (43.3) 101 (56.7) Mashouf [22] Iran 2006 Hospital Children Stool 1686 166 56 (33.7) 67 (40.3) 25 (15) 18 (11) Wilson [23] Nepal 2006 Hospital All ages Stool 770 83 12 (14.5) 56 (67.5) 5 (6.0) 10 (12) Nguyen [24] Vietnam 2006 Hospital All ages Stool 587 28 7 (25) 1 (3.6) 20 (71.4) Naik [11] Eritrea 2006 CHL Children Stool 2420 84 28 (33.3) 54 (64.3) 2 (2.4) Ghaemi [25] Iran 2007 Hospital Children Stool 634 56 10 (18) 12(22) 3 (5) 31 (55) Opintan and Newman [12] Ghana 2007 Hospital All ages Stool 594 24 4 (16.7) 17 (70.8) 2 (8.3) 1 (4.2) Jafari [26] Iran 2008 Hospital Children Stool 1120 157 13 (8) 48 (31) 8 (5) 88 (56) Orrett [30] Trinidad 2008 Hospital All ages Stool 5187 392 7 (1.8) 75 (19.1) 16 (4.1) 294 (75) Tiruneh [6] Ethiopia 2009 Hospital All ages Stool 1200 90 9 (10) 65 (72.2) 8 (8.9) 8 (8.9) Sherchand [15] Nepal 2009 Hospital Children Stool 440 21 14 (66.7) 2 (9.5) 5 (23.8) Zafar [16] Pakistan 2009 Community All ages Stool 8155 394 37 (9) 242 (62) 43 (11) 72 (18) Pourakbari [17] Iran 2010 Community All ages Stool 15,255 682 34 (5) 327 (48) 14 (2) 307(45) Xia [27] China 2011 Hospital All ages Stool 3531 467 354 (76) 113(24) Nunes [31] Brazil 2012 Hospital children Stool 250 26 21 (80.8) 5 (19.2) Khan [28] Nepal 2013 Hospital All ages Stool 507 69 19 (27) 29 (42) 15 (22) 6 (9) Mengstu [13] Ethiopia 2014 HC All ages Stool 382 17 3 (17.6) 5 (29.4) 3(16.7) 6(35.3) Mulatu [14] Ethiopia 2014 Hospital Children Stool 158 11 11 (100) Kumar [29] India 2014 Hospital All ages Stool 1402 146 3 (2.1) 98 (67.1) 8 (5.4) 37 (25.3) Total 69,849 4027 (5.8) 463 (11.5) 2067 (51.3) 212 (5.3) 1249 (33.2) A = Shigella dysentery, B = Shigella flexneri, C = Shigella boydii, D = Shigella sonnei HC health centre, PHL public health laboratories, CHL central health laboratories, Pub publication, Pos positive

Page 4 of 6 Tetracycline, Chloramphenicol, Ciprofloxacin and Cotrimoxazole (Table 2). In most of the studies observed in Africa (Table 3) and Asia (Table 4), Serogroups of Shigella were developed resistance to Tetracycline, Chloramphencol and Cotrimoxazole. Discussion This review addressed the status of the distribution of the Serogroups of Shigella and antimicrobial resistance patterns conducted in 25 eligible studies reviewed from Africa, Asia and South America. Shigella flexneri was revealed 100 % from all the eligible studies reviewed in eight African, fourteen Asian and three South American countries. S. dysentery was reviewed from 87, 72 and 33 % of the eight African, fourteen Asian and three South American countries respectively. S. boydii was reviewed from 75, 79 and 33 % of the studies carried out in eight Africa, fourteen Asia and three South America respectively. S. sonnei was also reviewed in 87, 86 and 100 % of the studies conducted in eight Africa, fourteen Asia and three South American countries respectively (Table 1). Of the total 69,849 stool sample data collected from the 25 eligible studies published from 2001 to 2014, 4027 Shigella bacteria were isolated which is 5.8 %. Above 50 % of the proportion of Shigella Serogroups was covered by S. flexneri which was followed by S. sonnei (33 %). S. boydii was contributed five percent of the four Serogroups of Shigella (Table 1). The pooled mean resistance of S. dysentriae to Ampicillin, Tetracycline, Cotrimoxazole, Chloramphenicol, Nalidix acid, Gentamicin and Ciprofloxacin were 72.1, 69.4, 60, 44, 40, 17 and 7 % respectively. The pooled mean resistance of S. flexneri to Tetracycline, Ampicillin, Nalidix acid, Cotrimoxazole, Chloramphenicol, Gentamicin and Ciprofloxacin were 75.8, 75.6, 74.5, 72.7, 51.7, 14.5 and 7 % respectively. The pooled mean resistance of S. boydii to Ampicillin, Tetracycline, Cotrimoxazole, Chloramphenicol, Ciprofloxacin, Gentamicin and Nalidix acid were 64, 63, 48, 29, 10, 6 and 3 % respectively. The pooled mean resistance of S. sonnei to Tetracycline, Cotrimoxazole, Nalidix acid, Ampicillin, Chloramphenicol, Gentamicin and Ciprofloxacin were 79, 71, 54, 47, 35, 16 and 0 % respectively (Table 5). Table 2 Review on antimicrobial resistance patterns of Serogroups of Shigella conducted in South America Author Serogroup Resistance patterns, N (%) Orrett [30] S. dysentery 7 (100) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) S. flexneri 36 (46) 9 (12) 0 (0.0) 0 (0.0) 16 (21) 0 (0.0) S. boydii 10 (63) 6 (38) 3 (3.9) 0 (0.0) 3 (19) 0 (0.0) S. sonnei 27 (9) 106 (36) 4 (1.4) 2 (0.7) 97 (33) 4 (1.4) Table 3 Review on antimicrobial resistance patterns of Serogroups of Shigella conducted in Africa Authors Serogroups Resistance patterns, N(%) Mache [8] S. dysentery 17 (73.9) 15 (64.2) 12 (52.2) 11 (8.7) 9 (39.1) 0 (0.0) S. flexneri 22 (71) 20 (64.5) 13 (41.9) 3 (9.7) 9 (29) 1 (3.2) S. boydii 10 (66.7) 8 (53.3) 4 (25) 0 (0.0) 5 (33.3) 0 (0.0) S. sonnei 5 (62.5) 6 (75) 2 (25) 0 (0.0) 2 (25) 0 (0.0) Tiruneh [6] S. dysentery 8 (89) 7 (77.8) 1 (11) 0 (0.0) 0 (0.0) 7 (77.8) 1 (11) S. flexneri 54 (83) 62 (95.4) 45 (69) 2 (31) 0 (0.0) 59 (90.8) 7 (10.8) S. boydii 4 (50) 7 (87.5) 2 (25) 0 (0.0) 0 (0.0) 4 (50) 2 (25) S. sonnei 3 (37.5) 8 (100) 2 (25) 0 (0.0) 0 (0.0) 6 (75) 1 (12.5) Naik [11] S. dysentery 19 (95) 18 (90) 0 (0.0) 0 (0.0) S. flexneri 42 (78) 34 (67) 0 (0.0) 3 (6)

Page 5 of 6 Table 4 Review on antimicrobial resistance patterns of Serogroups of Shigella conducted in Asia Author Serogroups Resistance patterns, N (%) Wang [19] S. flexneri 292 (95.4) 18 (5.9) 305 (99.7) 206 (67.3) 7 (2.3) S. sonnei 2 (8) 0 (0.0) 24 (96) 24 (96) 0 (0.0) Bhattacharya [20] S. dysentery 32 (82.1) 13 (33.3) 33 (84.6) 35 (89.5) S. flexneri 12 (100) 2 (16.7) 4 (33.3) 11 (91.7) S. boydii 2 (100) 1 (50) 0 (0.0) 1 (50) Mashouf [22] S. dysentery 54 (96.4) 50 (89.2) 52 (92.8) 3 (3.5) 48 (85.7) 52 (92.8) S. flexneri 63 (94) 61 (91.1) 61 (91.1) 0 (0.0) 3 (44.7) 59 (88.1) S. boydii 17 (68) 13 (52) 21 (84) 0 (0.0) 0 (0.0) 15 (60) S. sonnei 15 (83.3) 15 (83.3) 17 (94.4) 0 (0.0) 7 (38.8) 14 (77.7) Wilson [23] S. dysentery 6 (75) 7 (87.5) 5 (62.5) 1 (12.5) 5 (62.5) 51 (100) 6 (75) S. flexneri 33 (64.7) 49 (96) 23 (45.1) 1 (2) 16 (31.4) 8 (100) 34 (66.7) Jafari [26] S. dysentery 3 (37.5) 8 (100) 0 (0.0) 0 (0.0) 0 (0.0) 7 (87.5) 0 (0.0) S. flexneri 23 (47.9) 46 (95.8) 23 (47.9) 0 (0.0) 0 (0.0) 42 (87.5) 2 (4) S. boydii 5 (38.4) 11 (84.6) 1 (7.6) 0 (0.0) 2 (15.4) 10 (76.9) 0 (0.0) Table 5 Pooled range and mean of antimicrobial resistance patterns of Shigella Serogroups Serogroups of Shigella Resistance (%) PR PM PR PM PR PM PR PM PR PM PR PM PR PM S. dysentery 37.5 100 72.1 0 100 69.4 0 92.8 44.1 0 33.3 7 0 85.7 40.3 0 100 60.8 0 75 17.2 No. of studies 8 6 7 7 6 8 5 S. flexneri 46 100 75.6 12 95.8 75.8 0 91.1 51.7 0 31 7 0 99.7 74.1 6 100 72.7 0 66.7 14.5 No. of studies 9 6 7 8 7 9 6 S. boydii 38.4 100 64.4 38 87.5 63.1 3.9 84 29.1 0 50 10 0 15.4 3.1 19 76.9 48.2 0 25 6.3 No. of studies 6 5 5 5 5 6 4 S. sonnei 8 83.3 46.9 36 100 79.4 1.4 94.4 35.4 0 0.7 0.12 0 96 54.8 25 100 71.9 0 12.5 16.6 No. of studies 7 6 6 6 6 6 6 AMP Ampicillin, T Tetracycline, C Chloramphenicol, CIP Ciprofloxacin, NA Nalidixic acid, SXT sulphamethoxazole trimethoprim/cotrimoxazole, GM gentamicin, PR pooled range, PM pooled mean, No Number Above 50 % of all Serogroups of Shigella developed resistance to Ampicillin, Tetracycline, Cotrimoxazole and Chloramphenicol which are the commonly prescribed antimicrobial drugs. Conclusions The incidence of Shigella Serogroups in the selected three regions is different. The domination of S. flexneri is observed in Africa and Asia although S. sonnei, the most dominant in South America, is predominately isolated in one study in Ethiopia. This may give clue to the scientific world about the migration and movement of strains from one region to the other region. Shigella Serogroups are becoming resistance to the commonly prescribed antimicrobial drugs in developing countries. Authors contributions Both AK and SM contributed to the drafting of the manuscript. Both authors read and approved the final manuscript. Acknowledgements None. Competing interests The authors declare that they have no competing interests. Ethics approval and consent to participate Since the data was taken from data bases of different publishers, therefore ethical approval and consent to participate are not applicable.

Page 6 of 6 Received: 25 March 2016 Accepted: 23 August 2016 References 1. Baron S. Shigella. In: Hale TL, Keusch GT, editors. Baron s medical microbiology. Galveston: University of Texas; 2000. 2. Mims C, Dockrell HM, Goering RV, Roit I, Wakelin D, Zukerman M. Medical microbiology. 3rd ed. Edinburgh: Elsevier; 2007. 3. Kotloff KL, Winickoff JP, Ivanoff B, Clemens JD, Swerdlow DL, et al. Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bull World Health Organ. 1999;77:651 66. 4. Center for diseases control, Bacterial Foodborne and Diarrheal Disease National Case Surveillance: Annual Report. Atlanta: USA; 2005. Department of Health and Human Services. 5. European center for diseases control, Annual epidemiological report, 2013, reporting on 2011 surveillance data and 2012 epidemic intelligence data, Stockholm. 6. Fauci AS, Braunwald E, Kasper DL, Hauser SL, Logo DL, Jameson L, Loscalzo J. Harrison s principle of internal medicine. 7th ed. USA: McGraw-Hill Campanies; 2008. 7. Tiruneh M. Serodiversity and antimicrobial resistance pattern of Shigella isolates at Gondar University Teaching Hospital Northwest Ethiopia. Jpn J Infect Dis. 2009;62:93 7. 8. Mache A. Antibiotic resistance and Sero-groups of Shigella among pediatric outpatients in Southwest Ethiopia. East Afr Med J. 2001;78:296 9. 9. Brooks JT, Shapiro RL, Kumar L, Wells JG, Phillips-howard PA, Shi Y, Vulule JM, Hoekstra RM, Mintz E, Slutsker L. Epidemiology of sporadic bloody diarrhea in rural Western Kenya. Am J Trop Med Hyg. 2003;68(6):671 7. 10. Abu-Elyazeed RR, Wierzba TF, Frenck RW, Putnam SD, Rao MR, Savarino SL, Kamal KA, Peruski JR, Abd-EL Messih LA, EL-Alkamy SA, Naficy AB, Clemens JD. Epidemiology of Shigella-associated diarrhea in rural Egyptian children. Am J Trop Med Hyg. 2004;71(3):367 72. 11. Naik DG. Prevalence and antimicrobial susceptibility patterns of Shigella species in Asmara, Eritrea, Northeast Africa. J Microbiol Immunol Infect. 2006;39:392 5. 12. Opintan JA, Newman MJ. Distribution of Sero groups and serotypes of multiple drug resistant Shigella isolates. Ghana Med J. 2007;41:4 8. 13. Mengistu G, Mulugeta G, Lema T, Aseffa A. Prevalence and antimicrobial susceptibility patterns of Salmonella serovars and Shigella species. J Microb Biochem Technol. 2014;2:1 7. 14. Mulatu G, Beyene G, Zeynudin A. Prevalence of Shigella, Salmonella and Campylobacter species and their susceptibility patters among under five children with diarrhea in Hawassa town, South Ethiopia. Ethiop J Health Sci. 2014;24:101 8. 15. Sherchand JB, Yokoo M, Sherchand O, Pant AR, Nakogomi O. Burden of enteropathogens associated diarrheal diseases in children hospital Nepal. Scientific World. 2009;7(7):71 5. 16. Zafar A, Hassan R, Nizami SO, Seidlein L, Soofi S, Ahsan T, Chandio S, Habib A, Bhutto N, Siddiqui FJ, Rizvi F, Clemens JD, Bhutta ZA. Frequency of isolation of various subtypes and antimicrobial resistance of Shigella from urban slums of Karachi Pakistan. Int J Infect Dis. 2009;13:668 72. 17. Pourakbari B, Mamishi S, Mashoori N, Mahboobi N, Ashtiani MH, Afsharpaiman S, Abedini M. Frequency and antimicrobial susceptibility of Shigella species isolated in Children Medical Center Hospital, Tehran, Iran. Braz J Infect Dis. 2010;14(2):153 7. 18. Chompook P, Samosornsuk S, Seidlein LV, Jitsanguansuk S, Sirima N, Sudjai S, Mangit P, Kim DR, Wheeler JG, Todd J, Lee H, Ali M, Clemens J, Tapchaisri P, Chaicumpa W. Estimating the burden of shigellosis in Thailand: 36 month population based surveillance study. Bull World Health Organ. 2005;83:739 46. 19. Wang X, Du L, Seidlein L, Xu Z, Zhang Y, Hao Z, Han O, Ma J, Lee L, Ali M, Han C, Xing Z, Chen J, Clemens J. Occurrence of shigellosis in the young and elderly in rural china: results of a 12-month population-based surveillance study. Am J Trop Med Hyg. 2005;73:416 22. 20. Bhattacharya S, Khanal B, Bhattarai NR, Das ML. Prevalence of Shigella species and their antimicrobial resistance patterns in Eastern Nepal. J Health Popul Nutr. 2005;23:339 42. 21. Fulla F, Prado V, Duran C, Lagos R, Levine MM. Surveillance for antimicrobial resistance profiles among Shigella species isolated from a Semirural Community in the northern administrative area of Santiago Chile. Am J Trop Med Hyg. 2005;72:851 4. 22. Mashouf RY, Moshtaghi AA, Hashemi SH. Epidemiology of Shigella species isolated from diarrheal children and drawing their antibiotic resistance pattern. Iran J Clin Infect Dis. 2006;1:149 55. 23. Wilson W, Easow JM, Mukhopadhyay C, Shivananda PG. Isolation & antimicrobial susceptibility of Shigella from patients with acute gastroenteritis in western Nepal. Indian J Med Res. 2006;123:145 50. 24. Nguyen TV, Van PL, Huy CL, Gia KN, Weintraub A. Etiology and epidemiology of diarrhea in children in Hanoi Vietnam. Int J Infect Dis. 2006;10:298 308. 25. Ghaemi EO, Aslani MM, Moradi AV, Dadgar T, Livani S, Mansourian AR, Nosrat SB, Ahmadi AR. Epidemiology of Shigella-associated diarrhea in Gorgan, north of Iran. Saudi J Gastroenterol. 2007;13(3):129. 26. Jafari F, Hamidian M, Rezadehbashi M, Doyle M, Salmanzadeh-ahrabi S, Derakhshan F, Zali MR. Prevalence and antimicrobial resistance of diarrheagenic Escherichia coli and Shigella species associated with acute diarrhea in Tehran, Iran. Can J Infect Dis Med Microbiol. 2009;20:56 62. 27. Xia S, Xu B, Huang L, Zhao JY, Ran L, Zhang J, Chen H, Pulsrikarn C, Pornruangwong S, Aarestrup FM, Hendriksen RS. Prevalence and characterization of human Shigella infections in Henan Province China. J Clin Microbiol. 2011;49:232 42. 28. Khan S, Singh P, Asthana A, Ansari M. Magnitude of drug resistant shigellosis in Nepalese patients. Iran J Microbiol. 2013;5:334 8. 29. Kumar A, Oberoi A, Alexander VS. Prevalence and antimicrobial susceptibility patterns of Shigella in stool samples in a tertiary healthcare hospital of Punjab. Chrismed J Health Res. 2014;1:33 5. 30. Orrett FA. Prevalence of Shigella Serogroups and their antimicrobial resistance patterns in southern Trinidad. J Health Popul Nutr. 2008;26:456 62. 31. Nunes MRCM, Magalhaes PP, Penna FJ, Nunes JMM, Mendes EN. Diarrhea associated with Shigella in children and susceptibility to antimicrobials. J Pediatr. 2012;88:125 8. Submit your next manuscript to BioMed Central and we will help you at every step: We accept pre-submission inquiries Our selector tool helps you to find the most relevant journal We provide round the clock customer support Convenient online submission Thorough peer review Inclusion in PubMed and all major indexing services Maximum visibility for your research Submit your manuscript at www.biomedcentral.com/submit