Natural transmission of feline immunodeficiency virus from infected queen to kitten

Similar documents
Serological Prevalence of FeLV and FIV in Cats in Peninsular Malaysia

FIV/FeLV testing FLOW CHARTS

PCR detection of Leptospira in. stray cat and

////////////////////////////////////////// Shelter Medicine

ALTERNATIVES. Feline Immunodeficiency Virus

PRACTITIONER S UPDATE FELINE RETROVIRUS DISEASE

A Simply Smart Choice for Point-of-Care Testing

The domestic cat (Felis catus) has played a vital role in human lives for centuries.

Feline Leukemia Holly Nash, DVM, MS

Asociación Mexicana de Médicos Veterinarios Especialistas en Pequeñas Especies

Feline Immunodeficiency Virus (FIV)

Feline Vaccines: Benefits and Risks

INDEX ACTH, 27, 41 adoption of cats, 76, 135, 137, 150 adrenocorticotropic hormone. See ACTH affiliative behaviours, 2, 5, 7, 18, 66 African wild cat,

Vaccines for Cats. 2. Feline viral rhinotracheitis, FVR caused by FVR virus, also known as herpes virus type 1, FHV-1

Relative effectiveness of Irish factories in the surveillance of slaughtered cattle for visible lesions of tuberculosis,

Rapid Diagnostic Test for pet

Feline Immunodeficiency Virus (FIV) CATS PROTECTION VETERINARY GUIDES

RICKETTSIA SPECIES AMONG TICKS IN AN AREA OF JAPAN ENDEMIC FOR JAPANESE SPOTTED FEVER

Epidemiology and clinical outcomes of feline immunodeficiency virus and feline leukaemia virus in client-owned cats in New Zealand

Rabies in Georgia National Center for Disease Control & Public Health (NCDC) Georgia Paata Imnadze, M.D. Ph.D

PORCINE CIRCOVIRUS - 2 AN EMERGING DISEASE OF CROSSBRED PIGS IN TAMIL NADU, INDIA

Beckoning Cat Mews Fall/winter ,000 Cats have now been spayed or neutered!!!!!!!!!!!

The melanocortin 1 receptor (mc1r) is a gene that has been implicated in the wide

Feline Viruses in Wildcats from Scotland

Hurricane Animal Hospital 2120 Mount Vernon Road Hurricane, WV or

Canine Distemper Virus

Phylogenetic Analysis of Feline Immunodeficiency Virus in Feral and Companion Domestic Cats of New Zealand

FELINE CORONAVIRUS (FCoV) [FIP] ANTIBODY TEST KIT

VETERINARY IRELAND POLICY DOCUMENT ON CAT NEUTERING 2017

Feline Leukemia By Richard G. Olsen

CAT 16 FIV. The charity dedicated to helping sick, injured and homeless pets since 1897.

JOURNAL OF INTERNATIONAL ACADEMIC RESEARCH FOR MULTIDISCIPLINARY Impact Factor 2.417, ISSN: , Volume 4, Issue 2, March 2016

The detection of Cytauxzoon felis in apparently healthy free-roaming cats in the USA

Difficulties in demonstrating long term immunity in FeLV vaccinated cats due to increasing agerelated resistance to infection

Epidemiological survey and pathological studies on Caprine arthritis-encephalitis (CAE) in Japan

Above: life cycle of toxoplasma gondii. Below: transmission of this infection.

Enzootic abortion in sheep and its economic consequences

Veterinary Diagnostics Portfolio Overview. Complete solutions for veterinary testing and pathogen research

R E P O R T. American Association of Feline Practitioners and Academy of Feline Medicine Advisory Panel on Feline Retrovirus Testing and Management

STANDARD OPERATING PROCEDURE COL- 01

Association between Brucella melitensis DNA and Brucella spp. antibodies

Vaccination FAQs. Strategies for vaccination in a rescue (multiple cat) environment will be different from those of the privately owned cat.

Seroprevalence and risk factors of infections with Neospora caninum and Toxoplasma gondii in hunting dogs from Campania region, southern Italy

Acta Scientiae Veterinariae ISSN: Universidade Federal do Rio Grande do Sul Brasil

Feline Immunodeficiency Virus in South America

Feline Immunodefficiency Virus

KITTEN & ADULT HEALTH PROGRAM AND VACCINATION SCHEDULE

INFECTIOUS HEPATITIS, PARVOVIRUS & DISTEMPER

FIP Reducing the risk A practical guide for breeders Dr S F Moreland BA Vet MB MRCVS GCCF Veterinary Officer January 2017

Genetic and Phylogenetic Divergence of Feline Immunodeficiency Virus in the Puma (Puma concolor)

Interspecies Transmission of Feline Immunodeficiency Virus from the Domestic Cat to the Tsushima Cat (Felis bengalensis euptilura) in the Wild

Simple Herd Level BVDV Eradication for Dairy

Occurrence of Feline Immunodeficiency Virus and Feline Leukemia Virus Infection in Cats

WINN FELINE FOUNDATION For the Health and Well-being of All Cats

Animal User Group Meeting Fall Discussion Topics

Seroprevalence of feline leukemia virus and feline immunodeficiency virus infection among cats in Canada

Bovine Viral Diarrhea (BVD)

Drexel University Institutional Animal Care and Use Committee Mouse Breeding Policy

and other serological tests in experimentally infected cattle

CLADISTICS Student Packet SUMMARY Phylogeny Phylogenetic trees/cladograms

KITTENS RECOMMENDATIONS FOR OWNERS

Integrating genomics, testing, and management strategies to control OPP

husband P, R, or?: _? P P R P_ (a). What is the genotype of the female in generation 2. Show the arrangement of alleles on the X- chromosomes below.

Panleuk Basics Understanding, preventing, and managing feline parvovirus infections in animal shelters

ANIMAL RABIES IN NEPAL AND RACCOON RABIES IN ALBANY COUNTY, NEW YORK

11-ID-10. Committee: Infectious Disease. Title: Creation of a National Campylobacteriosis Case Definition

Parvovirus Type 2c An Emerging Pathogen in Dogs. Sanjay Kapil, DVM, MS, PhD Professor Center for Veterinary Health Sciences OADDL Stillwater, OK

F. COURCHAMP *, N. G. YOCCOZ, M. ARTOIS AND D. PONTIER. (Accepted 12 February 1998)

SensPERT TM Giardia Test Kit

Selection, Recombination and History in a Parasitic Flatworm (Echinococcus) Inferred from Nucleotide Sequences

Presentation Outline. Commercial RVF vaccines. RVF Clone 13 performance in the field. Candidate RVF vaccines in the pipeline

Virtual Shelter Project You Can Save Your Pet s Life Without A Shelter.

Feline Immunodeficiency Virus (FIV) is relatively common in cats, especially rescued cats, since it is more prevalent in cats that live outdoors.

CASE STUDIES. Trap-Neuter-Return Effectively Stabilizes and Reduces Feral Cat Populations

From the Director s Desk

DTIC I., I, I 8 8. N LD Lfl 0. N. IELECTE FEB2 8 89D Gordon R. Dreesman HTLV III VIRUS ISOLATION STUDIES ANNUAL REPORT. October 30, 1987.

Feline Retrovirus Testing and Management *

Animal reservoirs for Nipah virus

New Patient Information and Medical History Sheet

Human Rabies Post-Exposure Prophylaxis and Animal Rabies in Ontario,

Effect of Passive Immunoglobulin Transfer on Results of Diagnostic Tests for Antibodies against Borrelia burgdorferi

The incidence of feline injection site sarcomas in the United Kingdom

Antibody Test Kit for Feline Calici, Herpes and Panleukopenia Viruses (2011)

Overview of some of the latest development and new achievement of rabbit science research in the E.U.

Surveillance of animal brucellosis

Data were analysed by SPSS, version 10 and the chi-squared test was used to assess statistical differences. P < 0.05 was considered significant.

Basics of Sheep Health Care

Reproductive Vaccination- Deciphering the MLV impact on fertility

Applied-for scope of designation and notification of a Conformity Assessment Body Regulation (EU) 2017/746 (IVDR)

DEPARTMENT OF THE ARMY South Plains District Veterinary Command North Texas Branch Fort Hood, TX FH-VTF FEB 2009

of Conferences of OIE Regional Commissions organised since 1 June 2013 endorsed by the Assembly of the OIE on 29 May 2014

Update on diagnosis of feline infectious peritonitis (FIP)

THE LIFESAVING PACT AGREEMENT BETWEEN. The Pennsylvania Society for the Prevention of Cruelty to Animals. and the

Practical Biosecurity and Biocontainment on the Ranch. Dale Grotelueschen, DVM, MS Great Plains Veterinary Educational Center Clay Center, NE

OIE Aquatic Code and Aquatic Manual: What is new?

Bioinformatics: Investigating Molecular/Biochemical Evidence for Evolution

Diseases of Concern: BVD and Trichomoniasis. Robert Mortimer, DVM Russell Daly, DVM Colorado State University South Dakota State University

PARTIAL REPORT. Juvenile hybrid turtles along the Brazilian coast RIO GRANDE FEDERAL UNIVERSITY

FELINE INFECTIOUS PERITONITIS Visions Beyond the Tip of the Iceberg!

Nutrition of Kittens

Transcription:

Medeiros et al. Virology Journal 2012, 9: SHORT REPORT Open Access Natural transmission of feline immunodeficiency virus from infected queen to kitten Sheila de Oliveira Medeiros 1, Angelica Nascimento Martins 2, arlos Gabriel Almeida Dias 1, Amilcar Tanuri 1* and Rodrigo de Moraes Brindeiro 1 Abstract Background: Feline immunodeficiency virus (FIV) is a naturally occurring lentivirus that infects cats. The primary mode of transmission occurs through bite wounds, and other routes are difficult to observe in nature. Findings: The purpose of this study was to evaluate FIV transmission from queen to kitten in a colony of naturally infected stray cats. With this aim, a queen was monitored over a period of three years. A blood sample was taken to amplify and sequence gag, pol and env regions of the virus from the queen, two kittens and other cats from the colony. onclusion: Phylogenetic analysis showed evidence of queen to kitten transmission. Keywords: Vertical transmission, FIV, Stray cats Findings Feline immunodeficiency virus (FIV) is a member of the retrovirus group which includes human immunodeficiency virus (HIV) and can cause acquired immune deficiency syndrome in cats [1]. FIV is transmitted mainly by biting [2], which frequently occurs during fights or coitus, as the male bites the female at the neck to restrain her and to control positioning of both animals hindquarters [3]. Vertical and sexual transmission is unusual in nature [4,5], but experimental infection of cats with specific strains produces high rates of fetal infection and reproductive failure [6-8]. The average litter size for healthy cats maintained under equatorial natural photoperiod is about 4.82 ± 1.24 kittens (Dias.G.A., unpublished observations), and may be influenced by many factors, including development of systemic diseases [9]. Data obtained from experimental studies shows that FIV can be transmitted to 70% of the kittens with acute infection of the mothers [10], and the transmission can occur via placenta, during the birth process or through nursing [8,11]. Intrauterine transmission leads to several pathogenic consequences including arrested fetal development, abortion, stillbirth, * orrespondence: atanuri@biologia.ufrj.br 1 Laboratório de Virologia Molecular Animal, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil Full list of author information is available at the end of the article subnormal birth weight, and birth of viable, virusinfected and T-cell-deficient but asymptomatic kittens [8,12]. In nature, FIV-positive queens rarely infect their offspring. This is believed to result from the biological characteristics of the virus, in which a high viral burden is produced for only a few weeks after infection. After the acute stage of infection, the plasma antibody titer rises, circulating viral antigens become undetectable, and vertical transmission becomes unlikely [13]. Table 1 haracterization of samples in this study Animal Sex Serological status PRgag, FIV FeLV RT, env RJ34 (tomcat 1) M + - + RJ35 (tomcat 2) M + - + RJ36 (kitten) F + - + RJ47 F + - + RJ48 (queen) F + - + RJ50 F ND ND - RJ51 (kitten) F ND ND - RJ52 (kitten) F ND ND - RJ58 F ND ND - RJ59 F ND ND - RJ60 F ND ND - ND not determined. 2012 Medeiros et al.; licensee BioMed entral Ltd. This is an Open Access article distributed under the terms of the reative ommons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Medeiros et al. Virology Journal 2012, 9: Page 2 of 7 RJ36 Kitten RJ48 Queen RJ35 Tomcat 2 RJ47 RJ16 RJ01 RJ24 RJ02 RJ14 RJ21 RJ10 RJ13 74 RJ08 96 RJ17 B RJ11 RJ04 RJ07 RJ23 RJ19 RJ22 RJ03 RJ05 RJ20 TM2 Yokohama RJ06 79 RJ18 RJ15 LP3 77 LP20 E LP24 89 Shizuoka Fukuoka D PPR Petaluma A 36 poma Figure 1 (See legend on next page.) 0.05

Medeiros et al. Virology Journal 2012, 9: Page 3 of 7 (See figure on previous page.) Figure 1 Neighbour-joining phylogenetic tree based on alignment of 362 nucleotides (nt) from A-gag region. Bootstrap values based on 0 replicates. Values greater than 70% are shown. Brazilian samples are represented by grey branch lines, and samples from the study are represented by a gray box and symbols: the black circle represents sequences from the queen (RJ48); the white circle, those from the kitten (RJ36); the gray lozenge, those from the female cat (RJ47); the black square, those from tomcat 1 (RJ34); and the white square, those from tomcat 2 (RJ35). The horizontal bar indicates the nucleotide substitution scale. Reference sequences from GenBank are: Subtype A - From USA: Petaluma (M25381), PPR (M36968). Subtype B - From Japan: TM2 (M59418), Yokohama (D37819). From USA: USIL2489 (U11820). From Brazil: RJ01 to RJ08 (EU375620 to EU375627); RJ10 and RJ11 (EU375629 and EU375630); RJ13 to RJ24 (EU375632 to EU375643); RJ34 and RJ35 (EU375644 and EU375645). Subtype From USA: 36 (AY600517). From anada: (AF474246). Subtype E From Argentina: LP3 (AB027302), LP20 (AB027303), LP24 (AB027304). Subtype D From Japan: Fukuoka (D37822), Shizuoka (D37818). Selvage isolate from Pallas cat (AY713445). arpenter et al. first demonstrated natural vertical transmission in pumas in 16 [14]. Herein we present indirect evidence of natural transmission of FIV from queen to kitten in a group of stray domestic cats living in an urban environment. The data were obtained from a colony of 20 cats living on private property in the northern district of Rio de Janeiro, Brazil. The cohort was comprised mainly of stray cats, although owned cats that roam freely sometimes appeared. The colony was visually observed for five years. During this period, the number of cats dropped from twenty to one untamed female cat (queen). This queen was monitored for three years. She was very aggressive and she was constantly isolated. During the breeding season two tomcats were seen roaming in the area. The queen had two litters per year and she aborted twice. The average number of neonates per litter was 1 to 2. Eleven cats from the colony, including the queen (RJ48), two tom cats (RJ34 and RJ35) and three kittens - two from one litter (RJ51 and RJ52) and one from the other litter (RJ36) - were captured in cage traps or restrained manually. The age of the kittens when captured varied between 6 to 8 weeks, because the queen rejected them after weaning. All captured cats were neutered and adopted. A blood sample (3 ml) was collected by venipuncture (jugular or femoral) and placed in a tube with anticoagulant (EDTA). Peripheral blood mononuclear cells (PBM) were separated from plasma by centrifugation. Genomic DNA was extracted and FIV provirus was amplified by nested PR as described previously [15], using primers directed to FIV gag (A), pol (RT) and env (V3-V4) regions, generating fragments with 405 bp, 603 bp and 554 bp, respectively. These genomic regions were amplified by PR from the queen (RJ48), a kitten (RJ36), the two males (RJ34 and RJ35) and another female that was captured (RJ47) (Table 1). Plasma samples of these five cats were examined for FIV antibodies and feline leukemia virus (FeLV) antigens, using the ELISA test SNAP FIV/FeLV ombo Kit (IDEXX Laboratories) according to manufacturer s instructions, with positive results to FIV antibodies and negative results to FeLV antigens (Table 1). Using the lustalw tool [16], sequences from each region were aligned with reference sequences representing closely related viruses that were obtained from GenBank (www. ncbi.nlm.nih.gov/nucleotide) and from our previous study [15]. The phylogenetic analyses were performed by the neighbor-joining method with MEGA 4 software [17]. The distance matrix and the phylogenetic trees were generated using Kimura's two-parameter model for nucleotides. The phylogenetic trees were constructed based on majority viral populations, and were similar for the gag (A), pol (RT) and env (V3-V4) regions. We previously showed that only subtype B was circulating in samples of infected domestic cats from the city of Rio de Janeiro [15]. Sequences from these cats grouped with subtype B isolates and displayed a monophyletic clade, distinct from other sequences from Rio de Janeiro (Figures 1, 2 and 3). Sequences from the two tomcats (RJ34 and RJ35) grouped together in the three genomic regions (Figures 1, 2 and 3). To confirm the sequence profile and negate contamination problems, viral RNA (vrna) was extracted from plasma samples using the QIAamp viral RNA Mini Kit (QIAGEN, Germany) and were sequenced, as the cats were donated and taken to another city in Rio de Janeiro State and a new blood sample analysis could not be performed. The only distance found between the isolates from queen and kitten was in env gene (Table 2), and could be explained by natural selection during transmission, a completely different bottleneck compared with the main routes of FIV transmission. Sequences from a nonrelated FIV-infected cat from the same geographic area (RJ47) were evaluated to estimate what would be a regular genetic distance between non-related virus circulating and were segregated in different branches of the trees (Figures 1, 2 and 3). This suggests that epidemiologically linked sequences were evolutionarily closer to each other than to unlinked sequences. This sequence data provided indirect evidence for queen to kitten transmission in naturally infected domestic cats, and indicate that the two males were infected with the same strain. Our hypothesis is that, as the animals were removed from the original group, the reduced number of males led to an increase in the

Medeiros et al. Virology Journal 2012, 9: Page 4 of 7 RJ04 RJ16 RJ22 RJ19 RJ01 RJ24 RJ02 RJ10 RJ12 RJ14 RJ21 RJ05 91 RJ35 Tomcat 2 98 RJ47 RJ36 Kitten RJ48 Queen RJ20 B 96 RJ23 RJ07 RJ11 87 RJ17 RJ08 RJ09 RJ03 USIL RJ15 RJ06 RJ18 TM2 Petaluma PPR A 71 36 poma 0.02 Figure 2 Phylogenetic tree from 554 nt of RT-pol alignment. Tree was inferred as described in Figure 1. Symbols used in this figure are the same as those used in Figure 1. Reference sequences from GenBank are: Subtype A - From USA: Petaluma (M25381), PPR (M36968). Subtype B - From Japan: TM2 (M59418). From USA: USIL2489 (U11820). From Brazil: RJ01 to RJ08 (EU375568 to EU375575); RJ10 and RJ11 (EU375577 and EU375578); RJ13 to RJ24 (EU375580 to EU375591); RJ34 and RJ35 (EU375592 and EU375593). Subtype From USA: 36 (AY600517). From anada: (AF474246). Selvage isolate from Pallas cat (AY713445).

Medeiros et al. Virology Journal 2012, 9: Page 5 of 7 RJ36 Kitten RJ48 Queen RJ47 RJ34 Tomcat1 RJ35 Tomcat2 RJ03 RJ04 RJ20 RJ05 RJ01 RJ22 RJ10 RJ16 RJ21 RJ14 B RJ11 RJ02 TM2 RJ19 82 RJ07 RJ23 80 RJ17 97 RJ08 RJ09 86 RJ24 RJ15 RJ18 70 Yokohama LP3 Fukuoka Shizuoka D LP20 LP24 E 36 PPR Petaluma A 0.02 Figure 3 Neighbour-joining phylogenetic tree based on alignment of 487 nt from V3-V4-env region. Reference sequences from GenBank are: Subtype A - From USA: Petaluma (M25381), PPR (M36968). Subtype B - From Japan: TM2 (M59418), Yokohama (D37812). From Brazil: RJ01 to RJ11 (EU375594 to EU375604); RJ14 to RJ24 (EU375607 to EU375617); RJ34 and RJ35 (EU375618 and EU375619). Subtype From USA: 36 (AY600517). From anada: (AF474246). Subtype D: From Japan: Fukuoka (D37815), Shizuoka (D37811). Subtype E: From Argentina: LP3 (D84496), LP20 (D84498), LP24 (D84500).

Medeiros et al. Virology Journal 2012, 9: Page 6 of 7 Table 2 Pairwise distance between samples gag A RJ35 Tomcat 2 RJ36 Kitten RJ47 RJ35 Tomcat 2 0.0% RJ36 Kitten 0.0% 0.0% RJ47 0.3% 0.3% 0.3% RJ48 Queen 0.0% 0.0% 0.0% 0.3% pol RT RJ35 Tomcat 2 0.0% RJ36 Kitten 0.5% 0.5% RJ47 1.3% 1.3% 0.7% RJ48 Queen 0.5% 0.5% 0% 0.7% env V3-V4 RJ35 Tomcat 2 0.0% RJ36 Kitten 0.4% 0.4% RJ47 1.0% 1.0% 0.8% RJ48 Queen 0.6% 0.6% 0.2% 1.0% occurrence of fights over females, thus facilitating the transmission of FIV between them. Mother to offspring FIV transmission was not observed in a nine-month period of study (from June 10 until March 11) in a closed breeding colony composed of 22 females and 3 males [18]. This study could not recover FIV in cell culture from kitten PBM. As has been described, cats exhibit translocation of kitten behavior around the third week after partum. This behavior occurs when the queen is under stressinducing circumstances not normally observed in experimentally controlled environments, and needs to be investigated with regard to the potentiality for FIV transmission. Another maternal behavior directed at kittens could be involved, like umbilical cord chewing and anogenital licking, as well as other behaviors during the nursing period [9]. O Neil et al. (16) have reported a smaller litter size, abortion and fetal resorption in females experimentally infected with FIV, which is compatible with our observation of two abortions and a small litter size [7]. These data suggest deleterious effects of maternal FIV infection on reproductive parameters in this female. ompeting interests The authors declare that they have no competing interests. Acknowledgments The authors are grateful to Luciana Pessoa, Kirill A. Afonin and Yeshwant Bakhle for their critical comments and language corrections and to Alexandre Aleixo Rocha, who adopted the queen and kittens, for letting us work with their samples. GenBank accession numbers Sequences were submitted to GenBank. Accession numbers for A-gag region are EU375644, EU375645, JN836280, JN836283, JN836286; for RT-pol region EU375592, EU375593, JN836281, JN836284, JN836287; and for V3-V4- env region EU375618, EU375619, JN836282, JN836285, JN836288. Author details 1 Laboratório de Virologia Molecular Animal, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. 2 Virus-ell Interaction Section, HIV Drug Resistance Program, National ancer Institute at Frederick, Frederick, MD, USA. 3 Laboratório de Virologia Molecular, Departamento de Genética, Universidade Federal do Rio de Janeiro, S Bloco A2, sala 121 idade Universitária Ilha do Fundão, 21944-970, Rio de Janeiro - RJ, Brazil. Authors contributions SOM wrote the manuscript and carried out the molecular studies. ANM participated in the sequence alignment and the phylogenetic analysis. GAD contributed to data analysis. RMB participated in the design of the study. AT participated in the design and coordination of the study. All authors edited and approved the final manuscript. Received: 4 November 2011 Accepted: 25 May 2012 Published: 25 May 2012 References 1. Phillips TR, Talbott RL, Lamont, Muir S, Lovelace K, Elder JH: omparison of two host cell range variants of feline immunodeficiency virus. J Virol 10, 64(10):4605 4613. 2. Matteucci D, Baldinotti F, Mazzetti P, Pistello M, Bandecchi P, Ghilarducci R, Poli A, Tozzini F, Bendinelli M: Detection of feline immunodeficiency virus in saliva and plasma by cultivation and polymerase chain reaction. J lin Microbiol 13, 31(3):494 501. 3. Pontier D, Fouchet D, Bahi-Jaber N, Poulet H, Guiserix M, Natoli E, Sauvage F: When domestic cat (Felis silvestris catus) population structures interact with their viruses. omptes Rendus Biologies 2009, 332(2 3):321 328. 4. Jordan HL, Howard J, Barr M, Kennedy-Stoskopf S, Levy JK, Tompkins WA: Feline immunodeficiency virus is shed in semen from experimentally and naturally infected cats. AIDS Research and Human Retroviruses 18, 14 (12):1087 1092. 5. Kolenda-Roberts HM, Kuhnt LA, Jennings RN, Mergia A, Gengozian N, Johnson M: Immunopathogenesis of feline immunodeficiency virus infection in the fetal and neonatal cat. Front Biosci 2007, 12:3668 3682. 6. oats KS: The feline immunodeficiency virus-infected cat: a model for lentivirus-induced placental immunopathology and reproductive failure (mini-review). Am J Reprod Immunol 2005, 54(4):169 185. 7. O'Neil LL, Burkhard MJ, Hoover EA: Frequent perinatal transmission of feline immunodeficiency virus by chronically infected cats. J Virol 16, 70(5):2894 2901. 8. Weaver, Burgess S, Nelson PD, Wilkinson M, Ryan PL, Nail A, Kelly- Oulagliana KA, May ML, Reeves RK, Boyle R, oats KS: Placental immunopathology and pregnancy failure in the FIV-infected cat. Placenta 2005, 26(2 3):138 147. 9. Feldman E, Nelson RW: Breeding, pregnancy and parturition. In. In anine and Feline Endocrinology and Reproduction. Edited by Feldman E, Nelson RW. Philadelphia: Saunders ompany; 16:547 571. 10. O'Neil LL, Burkhard MJ, Hoover EA: Vertical transmission of feline immunodeficiency virus. Seminars in Veterinary Medicine and Surgery (Small Animal) 15, 10(4):266 278. 11. Sellon RK, Jordan HL, Kennedy-Stoskopf S, Tompkins MB, Tompkins WA: Feline immunodeficiency virus can be experimentally transmitted via milk during acute maternal infection. J Virol 14, 68:3380 3385. 12. Rogers AB, Hoover EA: Maternal-fetal feline immunodeficiency virus transmission: Timing and tissue tropisms. J Infect Dis 18, 178(4):960 967. 13. Burkhard MJ, Dean GA: Transmission and immunopathogenesis of FIV in cats as a model for HIV. urr HIV Res 2003, 1(1):15 29. 14. arpenter MA, Brown EW, ulver M, Johnson WE, Pecon-Slattery J, Brousset D, O'Brien SJ: Genetic and phylogenetic divergence of feline immunodeficiency virus in the puma (Puma concolor). J Virol 16, 70 (10):6682 6693.

Medeiros et al. Virology Journal 2012, 9: Page 7 of 7 15. Martins AN, Medeiros SO, Simonetti JP, Schatzmayr HG, Tanuri A, Brindeiro RM: Phylogenetic and genetic analysis of feline immunodeficiency virus gag, pol, and env genes from domestic cats undergoing nucleoside reverse transcriptase inhibitor treatment or treatment-naive cats in Rio de Janeiro, Brazil. J Virol 2008, 82(16):7863 7874. 16. Thompson JD, Higgins DG, Gibson TJ: LUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 14, 22(22):4673 4680. 17. Tamura K, Dudley J, Nei M, Kumar S: MEGA 4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 2007, 24 (8):1596 15. 18. Ueland K, Nesse LL: No Evidence of Vertical Transmission of Naturally Acquired Feline Immunodeficiency Virus-Infection. Vet Immunol Immunopathol 12, 33(4):301 308. doi:10.1186/1743-422x-9- ite this article as: Medeiros et al.: Natural transmission of feline immunodeficiency virus from infected queen to kitten. Virology Journal 2012 9:. Submit your next manuscript to BioMed entral and take full advantage of: onvenient online submission Thorough peer review No space constraints or color figure charges Immediate publication on acceptance Inclusion in PubMed, AS, Scopus and Google Scholar Research which is freely available for redistribution Submit your manuscript at www.biomedcentral.com/submit