Cinereous Vulture Nesting Ecology in Ikh Nartyn Chuluu Nature Reserve, Mongolia

Similar documents
FIRST NESTING OF CRITICALLY ENDANGERED VULTURE IN BIKANER: THE NEST SITE RECORD OF LONG BILLED VULTURE (GYPS INDICUS) IN KOLAYAT TEHSIL, BIKANER

Egyptian vulture (Neophron percnopterus) research & monitoring Breeding Season Report- Beypazarı, Turkey

Multiple broods from a hole in the wall: breeding Red-and-yellow Barbets Trachyphonus erythrocephalus in southeast Sudan

CONSERVATION OF IBERIAN VULTURES. Overarching Workshop to Develop a Multi-species Action Plan to Conserve African- Eurasian Vultures

Species Fact Sheets. Order: Gruiformes Family: Cariamidae Scientific Name: Cariama cristata Common Name: Red-legged seriema

Egyptian vulture (Neophron percnopterus) 2010 Breeding Season Report- Beypazarı, Turkey

Diet of the Eurasian Black Vulture, Aegypius monachus Linnaeus, 1766, in Turkey and implications for its conservation

Ecography. Supplementary material

Influence of nest box design on occupancy and breeding success of predatory birds utilizing artificial nests in the Mongolian steppe

Internship Report: Raptor Conservation in Bulgaria

Population dynamics and spatial distribution of Griffon Vultures (Gyps fulvus) in Portugal

Great Horned Owl (Bubo virginianus) Productivity and Home Range Characteristics in a Shortgrass Prairie. Rosemary A. Frank and R.

What is the date at which most chicks would have been expected to fledge?

BREEDING ECOLOGY OF THE LITTLE TERN, STERNA ALBIFRONS PALLAS, 1764 IN SINGAPORE

PEREGRINE FALCON HABITAT MANAGEMENT GUIDELINES ONTARIO MINISTRY OF NATURAL RESOURCES

Osprey Watch Osprey Monitoring Guidelines

Bald Eagles in the Yukon. Wildlife in our backyard

Ernst Rupp and Esteban Garrido Grupo Jaragua El Vergel #33, Santo Domingo Dominican Republic

Ecological Studies on Three Endangered Vulture Species in the Pokhara Valley, Nepal

By Hans Frey ¹ ² & Alex Llopis ²

American Bison (Bison bison)

Tree Swallows (Tachycineta bicolor) are breeding earlier at Creamer s Field Migratory Waterfowl Refuge, Fairbanks, AK

GREATER SAGE-GROUSE BROOD-REARING HABITAT MANIPULATION IN MOUNTAIN BIG SAGEBRUSH, USE OF TREATMENTS, AND REPRODUCTIVE ECOLOGY ON PARKER MOUNTAIN, UTAH

Coyote (Canis latrans)

Wayne E. Melquist Idaho Cooperative Wildlife Research Unit University of Idaho Moscow, Idaho 83843

Survivorship. Demography and Populations. Avian life history patterns. Extremes of avian life history patterns

The Long-term Effect of Precipitation on the Breeding Success of Golden Eagles Aquila chrysaetos homeyeri in the Judean and Negev Deserts, Israel

Rock Wren Nesting in an Artificial Rock Wall in Folsom, Sacramento County, California

Ruppell s Griffon Vulture

The Bearded Vulture Gypaetus barbatus is a

Piping Plover. Below: Note the color of the sand and the plover s back.

Breeding Activity Peak Period Range Duration (days) Laying May May 2 to 26. Incubation Early May to mid June Early May to mid June 30 to 34

Raptor Ecology in the Thunder Basin of Northeast Wyoming

Status of Vultures in India

Breeding White Storks( Ciconia ciconia at Chessington World of Adventures Paul Wexler

Proponent: Switzerland, as Depositary Government, at the request of the Animals Committee (prepared by New Zealand)

Fun Penguin Facts. Instructions. All About Reading Extension Ideas: All About Spelling Extension Ideas:

Red-Tailed Hawk Buteo jamaicensis

Short Report Key-site monitoring on Hornøya in Rob Barrett & Kjell Einar Erikstad

BLACK OYSTERCATCHER NEST MONITORING PROTOCOL

Erin Maggiulli. Scientific Name (Genus species) Lepidochelys kempii. Characteristics & Traits

12 The Pest Status and Biology of the Red-billed Quelea in the Bergville-Winterton Area of South Africa

Species Fact Sheets. Order: Caprimulgiformes Family: Podargidae Scientific Name: Podargus strigoides Common Name: Tawny frogmouth

Animal Biodiversity. Teacher Resources - High School (Cycle 1) Biology Redpath Museum

NOTES ON BREEDING SATYR TRAGOPAN TRAGOPAN SATYRA AT SRI CHAMARAJENDRA ZOOLOGICAL GARDENS, MYSORE

Seven Nests of Rufescent Tiger-Heron (Tigrisoma lineatum)

CHANGE IN NUMBERS AND NESTING ECOLOGY OF THE GYRFALCON IN THE YAMAL PENINSULA, RUSSIA, FROM 1981 TO 2010

The Road Lesser Traveled: A Map to Rheabilitation and Conservation By Kenna Mokobi

Gambel s Quail Callipepla gambelii

Physical Description Meadow voles are small rodents with legs and tails, bodies, and ears.

6 Month Progress Report. Cape vulture captive breeding and release programme Magaliesberg Mountains, South Africa. VulPro NPO

3. Chicks weigh 86 grams when they hatch and gain 100 grams a day until they are about 50 days old when they are ready to take care of itself.

A record of White-rumpedvulture (Gyps bengalensis) nesting in Ahmedabad and Surendranagar districts of Gujarat.

Ames, IA Ames, IA (515)

Key concepts of Article 7(4): Version 2008

EIDER JOURNEY It s Summer Time for Eiders On the Breeding Ground

RESPONSES OF BELL S VIREOS TO BROOD PARASITISM BY THE BROWN-HEADED COWBIRD IN KANSAS

ECOSYSTEMS Wolves in Yellowstone

Fun Penguin Facts. a reading and spelling review activity

Grey Fox. Urocyon cinereoargenteus

INTERNATIONAL TAKHI GROUP NATIONAL UNIVERSITY OF MONGOLIA DEPARTMENT OF BIOLOGY. Thesis for Master Degree

2009 Eagle Nest News from Duke Farms eagle nest Written by Larissa Smith, Assistant Biologist

University of Canberra. This thesis is available in print format from the University of Canberra Library.

Western Snowy Plover Recovery and Habitat Restoration at Eden Landing Ecological Reserve

NORTHERN GOSHAWK NEST SITE REQUIREMENTS IN THE COLORADO ROCKIES

Effects of prey availability and climate across a decade for a desert-dwelling, ectothermic mesopredator. R. Anderson Western Washington University

LEAST TERN AND PIPING PLOVER NEST MONITORING FINAL REPORT 2012

Afring News. An electronic journal published by SAFRING, Animal Demography Unit at the University of Cape Town

POPULATION SIZE AND BREEDING PERFORMANCE OF EGYPTIAN VULTURES (NEOPHRON PERCNOPTERUS) IN EASTERN IBERIAN PENINSULA

April 2018 Featured Expert: Katey Duffey

The hen harrier in England

Scaled Quail (Callipepla squamata)

Activity 4 Building Bird Nests

Opossum. Didelphis virginiana

AGE AT FIRST BREEDING AND CHANGE IN PLUMAGE OF KELP GULLS LARUS DOMINICANUS IN SOUTH AFRICA. R. J. M. CRAWFORD*, B. M. DYER* and L.

CONCLUSIONS AND SUGGESTIONS AFTER EEP-VCF STAFF VISIT AT THE PARCO NATURA VIVA

Wild Fur Identification. an identification aid for Lynx species fur

Proponent: Switzerland, as Depositary Government, at the request of the Animals Committee (prepared by New Zealand)

DO DIFFERENT CLUTCH SIZES OF THE TREE SWALLOW (Tachycineta bicolor)

Full house. the Burrowing Parrots of Patagonia. By JUAN F. MASELLO, CHRISTINA SOMMER and PETRA QUILLFELDT

RESTORATION OF A DECLINING POPULATION OF PEREGRINE FALCONS IN SWEDEN THROUGH CAPTIVE BREEDING: 30 YEARS OF EXPERIENCE

Federal: Birds of Conservation Concern (BCC) for U.S. Fish and Wildlife Service (USFWS) Region 1; protected under the Migratory Bird Treaty Act.

Anas clypeata (Northern Shoveler)

Mauritania. 1 May 25 October Desert Locust Information Service FAO, Rome outbreak

Nature s undertakers: the African White-backed Vultures of the Kimberley area

EXERCISE 14 Marine Birds at Sea World Name

Female Persistency Post-Peak - Managing Fertility and Production

Female Persistency Post-Peak - Managing Fertility and Production

Woodcock: Your Essential Brief

Ceri Pennington VELOCIRAPTOR

Wolf Recovery in Yellowstone: Park Visitor Attitudes, Expenditures, and Economic Impacts

Video Evidence Confirms Cannibalism in Eleonora s Falcon

For further information on the biology and ecology of this species, Clarke (1996) provides a comprehensive account.

You are about to go on a journey of discovery around the park to find out more about how different animals are suited to their environment.

Page Title: Change from "Vulture Dispersal FAQ", to "Vulture Management FAQ" or another more neutral title.

Rufous hare-wallaby Lagorchestes hirsutus

DEVELOP AND PILOT A RESTOCKING STRATEGY FOR EGYPTIAN VULTURES ON THE BALKANS. Method applied for delayed release in Bulgaria 2018

Demography and breeding success of Falklands skua at Sea Lion Island, Falkland Islands

COLORADO LYNX DEN SITE HABITAT PROGRESS REPORT 2006

Thefirst attempt at Brood Manipulation of the Golden Eagle Aquila chrysaetos in Japan

Transcription:

Mongolian Journal of Biological Sciences 2005 Vol. 3(1): 13-19 Cinereous Vulture Nesting Ecology in Ikh Nartyn Chuluu Nature Reserve, Mongolia Richard P. Reading 1,2, Sukh Amgalanbaatar 2,3, David Kenny 1,2 and Banzarjav Dashdemberel 4 1 Denver Zoo, 2300 Steele St., Denver, CO 80205, e-mail: rreading@denverzoo.org 2 Mongolian Conservation Coalition, Ulaanbaatar, Mongolia 3 Institute of Biology, Mongolian Academy of Sciences, Ulaanbaatar 51, Mongolia 4 National University of Mongolia, Ulaanbaatar, Mongolia Abstract Cinereous vultures (Aegypius monachus) are the largest raptors in Eurasia. Little is known about the species, especially in Mongolia. We studied the nesting ecology of cinereous vultures in Ikh Nartyn Chuluu Nature Reserve, Dornogobi Aimag. To assess reproductive success, we located active nests and periodically checked to determine if they remained active. We measured nest sizes and, periodically, nestling sizes and weights. We located 42 active cinereous vulture nests (27 on rocks and 15 on trees) in 2003 and 19 nests (14 on rocks and 5 on trees) in 2004. Mean volume of active nests was 3.92 ± 0.39 m 3 (n = 36). Most nests failed prior to egg hatching, but after hatching nesting success rates increased dramatically. Following hatching, cinereous vulture chicks grew linearly until leveling off just prior to fledging. We generated growth curves for chicks that allowed us to determine the average size of chicks on specific dates. Improving the prospects for successful cinereous vulture conservation likely requires a better understanding of nesting ecology. As such, we plan to improve the quality of our data by monitoring nests more intensively to determine incubation and fledging lengths, as well as causes of nest failures. Key words: Aegypius monachus, Cinereous vulture, Gobi, Mongolia, nesting ecology Introduction Cinereous vultures (Aegypius monachus) are the largest raptors in Eurasia, sporting impressive 2.5 3 m wingspans and weighing 7 13 kg (Del Hoyo et al., 1992; Álvarez & Garcés, 1997). The species appears to be faring well in Mongolia, although internationally conservationists have expressed concern over the status of the species. Listed as Vulnerable in 1994 by the IUCN, the species was upgraded to Near Threatened in 2000, where it remains today despite continued population declines (IUCN, 2004). Little is known about the species in Mongolia, although a few research projects were recently initiated. For example, Korean researchers have studied the species in Ikh Gazariin Chuluu in Dundgobi Aimag, and researchers from Mongolia and USA have been studying the ecology of cinereous vultures in Hustai National Park and Erdenesant soum of Tov aimag since 2002 (Batbayar, 2004). Ikh Nartyn Chuluu Nature Reserve (Ikh Nart) in Dornogobi Aimag supports a large, dense http://dx.doi.org/10.22353/mjbs.2005.03.02 (measured by total nests per unit area) breeding colony of cinereous vultures that usually includes >40 active nests/year in the northern 23,000 ha of the reserve. Vultures in Ikh Nart nest primarily on rocky outcrops and the scattered elm trees (Ulmus pumila) in the reserve. As with other vulture species in other areas of the world, nest site availability appears to constrain breeding cinereous vultures to areas with suitable nesting habitat; in this case, the more rugged areas like Ikh Nart (Sarà & Di Vittorio, 2003; Batbayar, 2004; Parra & Tellería, 2004). Nests on outcrops appear to be readily approachable by people and ground predators. In 2003 we initiated a research project to explore the nesting ecology of these large vultures in Ikh Nart. Our objectives were to compare nesting success rates of pairs using rocky outcrops with those using trees and to document growth rates of cinereous vulture nestlings. Study Area We conducted our research in the northern 23,000 ha of Ikh Nartyn Chuluun Nature Reserve. The reserve, located in northwestern Dornogobi 13

R. P. Reading et al. Aimag was established in 1996 to protect 43,740 ha of rocky outcrops and associated wildlife in northwestern Dornogobi Aimag (Myagmarsuren, 2000). No permanent human settlements exist in or near the protected area (i.e. all towns > 30 km away), although nomadic pastoralists use the area seasonally for livestock grazing and maintain some permanent wintering structures (mostly stone corrals) in the reserve. The region is a high upland (~1,200 m) covered by semi-arid steppe vegetation. Permanent cold-water springs are available in some of the several shallow valleys draining the reserve. Climate is strongly continental and arid, characterized by cold winters (to - 40 C), dry, windy springs (to 30 mps), and relatively wet (compared with the surrounding area) and hot summers (to 35 C). Precipitation is low and seasonal, with most precipitation falling in the summer (late June August). Flora and fauna are representative of the semi-arid regions of Central Asia, with a mix of desert and steppe species. Vegetation is sparse. Potential nesting trees for cinereous vultures and other birds are sparsely distributed along some of the drainages in the reserve. These trees are invariably elm trees. Xerophytic and hyperxerophytic semi-shrubs, shrubs, scrub vegetation, and turfy grasses dominate the reserve, although different plant communities can be found around oases and streams, on rocky outcrops, and other localized areas. Other globally significant wildlife species occurring in Ikh Nart include argalis (Ovis ammon), ibex (Capra sibirica), goitered gazelles (Gazella subgutturosa), Mongolian gazelles (Procapra gutturosa), lesser kestrels (Falco naumanni) and saker falcons (F. cherrug). 14 Methods To assess reproductive success, we located as many active nests as possible in the region, traversing the northern part of Ikh Nart on foot and in vehicles. Active nests were defined as nests with an egg or a chick (but see Steenhof, 1987). Where necessary we used binoculars, spotting scopes, or climbed into nests or onto adjacent rocks or tree limbs to confirm the presence of an active nest with an egg or chick. We collected location coordinates for all active nests using a global positioning system and noted the nesting substrate (i.e. tree or rock). Throughout the summer we periodically determined if nests remained active or not and collected data on nests and nestlings. We spent as little time as possible in the vicinity of nests to minimize disturbance (Steenhof, 1987). We measured nest sizes, including nest height, external diameter and internal diameter (diameter of the nest bowl), early in the nesting season. We used the nest height and external diameter to roughly determine nest volume (V = H * 2ðr 2, where V = volume, H = nest height, and r = external nest radius). We also periodically measured nestling size, including total body length (with and without feathers), wing lengths (with and without feathers), leg length (from the top of the femur to the tip of the middle toe), middle toe length, talon length, beak length, and weight. In late August and September 2004, we banded 5 nestlings with leg bands obtained from the Ornithology Laboratory of the Mongolian Academy of Sciences. We examined all variables for normality and homogeneity of group variance using Bartlett s test. We used natural log, sine, and square root transformations or excluded outliers (n = 1-3) to normalize data where appropriate. We compared paired means using simple t-tests, with corrections for separate variances where appropriate. We used linear and log-linear regressions of body measurements against the number of days since June 1 to evaluate growth patterns of various vulture chick morphological measurements. Unless otherwise indicated, we present all means ± 1 S.E. We set significance at P < 0.05. Results We located a total of 42 active cinereous vulture nests (27 on rocks and 15 on trees) in 2003 and 19 active nests (14 on rocks and 5 on trees) in 2004. Cinereous vultures construct very large nests. In Ikh Nart, mean volume of active nests was 3.92 ± 0.39 m 3 (n = 36). Mean dimensions were: height = 75.47 ± 4.49 cm and external diameter = 174.22 ± 4.63 cm. Nests in trees (4.30 ± 1.00 m 3, n = 11) had larger volumes than nests on rocks (3.75 ± 0.36 m 3, n = 25), but this difference was not significant (t 12.7 = 0.52, P = 0.62). Nests on trees were slightly wider (174.73 ± 11.59 cm), but a little shorter (75.18 ± 9.28 cm) than nests on rocks (174.00 ± 4.60 cm and 75.60 ± 5.15 cm, respectively). These differences were not significant (t 13.3 = 0.06, P = 0.70 and t 16.5 = 0.04, P = 0.97, respectively). Most nests failed prior to egg hatching (Fig. 1). In 2003, only 12 of 42 nests (28.6 %) retained

Cinereous Vulture Nesting Ecology # Nest Remaining 42 35 28 21 14 7 0 13-Apr 8-May 2-Jun 27-Jun 22-Jul 2003 2004 % Nests Remaining 100 90 80 70 60 50 40 30 20 10 0 13-Apr 8-May 2-Jun 27-Jun 22-Jul 2003 2004 Figure 1. Cinereous vulture (Aegypius monachus) nesting success in Ikh Nartiin Chuluu Nature Reserve, Dornogobi Aimag, 2003-2004. Decrease in number (top) and % (bottom) of active nests over time. fledglings by late July. After hatching (throughout May for most nests in Ikh Nart) nesting success rates increased dramatically. In 2004 we began monitoring nests in May, after the nesting began and eggs were laid. We found in total 19 nests, of which 12 (63.2 %) retained fledglings by late July. Most nests on rocky out-crops (78.6 %) lasted until late July in 2004, but tree nests still failed at a high rate (20.0 %). Similarly, in 2003 84.6 % of rock nests that survived until June retained fledglings by late July, but only 12.5 % of tree nests survived that long (Fig. 1). Following hatching, cinereous vulture chicks grew at a steady rate (i.e. linearly) that tended to level off just prior to fledging (Fig. 2). Combining data from 2003 and 2004 we were able to generate growth curves for chicks. These curves were highly significant for each of the morphological traits we measured (Table 1). Log-linear regressions did not improve curve fit (adjusted R 2 values were all lower for log-linear regressions), and thus we only report the linear regressions here. Alternatively, using data only through September 1 did increase the R 2 values substantially (Table 1). Using a September 1 cutoff date for our growth curves eliminates only 5-6 data points (n = 2 chicks) for each variable (Fig. 2). In addition, these 2 nests were located late in the year, so we cannot be sure they were not renesting attempts. Using the growth curves from our linear regressions on data through September 1 (Table 1, Fig. 2), we can determine the average size of cinereous vulture chicks on specific dates. For example, on average a vulture chick will weigh 7.6 kg on July 1, 9.2 kg on August 1, and 10.7 kg on September 1. He or she will also reach a total body length (with feathers) of 77.3 cm with a wing length (with feathers) of 82.3 cm and a girth of 50.9 cm by July 1. By September 1, right around fledging, the average chick will grow to 126.9 cm in length and 68.9 cm in girth, with a total wingspan (both wings) of 314.7 cm. 15

R. P. Reading et al. Table 1. Cinereous vulture (Aegypius monachus) nestlings in Ikh Nartiin Chuluu Nature Reserve, Dornogobi Aimag, 2003-2004. All linear measurements are in cm or weight in kg against number of days since June 1. TBL = total body length; constant = intercept; and coefficient = slope. Variable N Constant ±S.E. Coefficient ±S.E. Adj. R 2 F-Value P All data TBL (feathers) 116 61.74 ±2.13 0.56 ±0.04 0.59 165.69 <0.001 TBL (no feathers) 85 62.49 ±1.57 0.19 ±0.03 0.30 36.59 <0.001 Wing (feathers) 120 57.85 ±2.74 0.86 ±0.06 0.66 228.75 <0.001 Wing (no feathers) 82 54.36 ±1.93 0.27 ±0.04 0.40 54.302 <0.001 Girth 86 46.54 ±1.19 0.17 ±0.02 0.38 52.23 <0.001 Leg 115 42.79 ±1.20 0.18 ±0.03 0.29 46.46 <0.001 Toe & Talon 113 12.81 ±0.18 0.02 ±0.003 0.13 17.34 <0.001 Talon 86 2.87 ±0.09 0.01 ±0.002 0.34 43.90 <0.001 Beak 85 5.50 ±0.14 0.03 ±0.003 0.51 87.63 <0.001 Weight 113 6.82 ±0.23 0.03 ±0.01 0.25 39.00 <0.001 Through September 1 only TBL (feathers) 110 53.31 ±2.21 0.80 ±0.83 0.69 242.07 <0.001 Wings (feathers) 114 46.05 ±2.70 1.21 ±0.06 0.76 356.99 <0.001 Girth 80 42.22 ±1.25 0.29 ±0.03 0.57 104.58 <0.001 Toe & Talon 107 12.05 ±0.20 0.03 ±0.004 0.36 61.14 <0.001 Talon 79 2.55 ±0.08 0.02 ±0.002 0.64 139.38 <0.001 Beak 79 4.98 ±0.14 0.04 ±0.003 0.67 156.81 <0.001 Weight 107 6.14 ±0.28 0.05 ±0.01 0.37 54.87 <0.001 We located several nests only after eggs were laid and chicks hatched and due to personnel and time constraints, we did not monitor nests continuously from egg laying to hatching and to fledging. As a result, we could not determine the exact incubation and fledging periods for vultures. 16 Discussion Improving the prospects for successful cinereous vulture conservation will likely require a better understanding of the nesting ecology of the species. Research in Spain and Greece found that human disturbance (measured by distance to human habitation or density of roads) negatively impacted nesting success of cinereous vultures (Fargallo et al., 1998; Donázar et al., 1993; Poirazidis et al., 2004). Batbayar (2004) found cinereous vulture nests on relatively steep slopes in central Mongolia, but did not directly compare nest sites with the surrounding terrain. In Spain vultures preferred to nest in rugged habitat (Donázar et al., 2002). Similarly, vultures in Greece preferred old, isolated trees on steeper slopes (Poirazidis et al., 2004). Egyptian vultures (Neophron percnopterus) and griffon vultures (Gyps fulvus) also appear to prefer nest sites far from humans and on rugged terrain (Sarà & Di Vittorio, 2003; Parra & Tellería, 2004). Competition for preferred nest sites can be intense, occasionally leading to aggressive encounters (Blanco et al., 1997). The densities of nesting pairs we found in Ikh Nart (~1.8 pairs/1,000 ha) is similar to the 1.3-2.9 pairs/1,000 ha reported for central Mongolia by Batbayar (2004) and the 1.7-2.0 pairs/1,000 ha reported for Uzbekistan (Del Hoyo et al., 1992), but far more than the 0.5 pair/1,000 ha reported for the Khentii Mountains of Mongolia (Del Hoyo et al., 1992). Del Hoyo et al. (1992) reports typical nest dimensions for cinereous vultures of 145 190 cm wide by 95 300 cm high. Batbayar (2004) reported mean nest surface dimensions of 168 ± 4.24 cm by 185 ± 4.90 cm and a mean nest height of 74 ± 3.62 cm. We found similar widths (mean = 174.22 ± 4.63 cm) and heights (mean = 75.47 ± 4.49 cm) to that found by Batbayar (2004), but smaller heights than those reported by Del Hoyo et al. (1992). We plan to continue our work to improve the quality of our data by monitoring vulture nests more intensively, but primarily from remote locations in the future. Gaps in our data necessitated that we assumed that all nests with nestlings hatched on the same day. This assumption is obviously incorrect and likely accounts for much of the variation in nestling sizes we observed. In addition, some nests that contained chicks in late August and September likely represent re-nesting attempts of pairs that lost eggs (or perhaps even chicks) early in the breeding season, although they could simply result from late nesting pairs. However, Del Hoyo

R. P. Reading et al. et al. (1992) report that cinereous vultures have incubation periods of 54-56 days and fledging periods of 104-120 days in Central Asia. Thus, eggs laid in late March could very well result in nestlings that fledge as late as late September. Nevertheless, we believe that the growth curves that exclude data past September 1 are more accurate (Table 1). Batbayar (2004) found higher rates of nesting success (43-73%) at 2 sites in Central Mongolia from 2002 2003 (59 % overall) than we found in our study (Fig. 1). Similar to our study (Fig 1), he found that most nest failures (70 %) occurred during incubation, as opposed to the nestling period (30 %) (Batbayar, 2004). Future research will also strive to determine the causes of nest failures. We are particularly interested in why tree nests appear to fail at higher rates than nests on rocky outcrops, especially since ground predators (e.g. wolves (Canis lupus); foxes (Vulpes spp.); Pallas cats (Otocolobus manul) should be able to access nests on rocks more easily. s may attract nomadic pastoralists with their herds in search of shade, increasing disturbance (D. Houston, pers. comm.). Aerial predators, especially northern ravens (Corvus corax) are common in Ikh Nart and likely contribute to nest failures, especially egg predation. We believe that heavy winds may be responsible for the loss of chicks in some tree nests as well. We also plan to band more fledglings to understand survivorship of fledglings, especially comparing the survivorship of cinereous vulture young. As we continue to obtain more detailed data on cinereous vulture nesting ecology, we hope to better understand the factors that influence nesting success. In turn, we hope these results will help us develop a better conservation management plan for the species in Mongolia. 18 Acknowledgments Several people helped us to make this work possible, including Bat-Orshikh, Ts. Monkhzul, E. Togoldor, G. Tsogtjargal, G. Wingard, and several Earthwatch volunteers. Funding was provided by the Denver Zoological Foundation, Earthwatch Institute, the Trust for Mutual Understanding, the Mongolian Academy of Sciences, and the Argali Wildlife Research Center. Comments by Nyambayar Batbayar, David Houston, and Nigel Barton greatly strengthened the paper. References Álvarez, E. & Garcés, F. 1997. El buitre negro. Colección GREA #4. Grupo para la Recuperación de la Fauna Autóctona y su Hábitat & Central Hispano. Madrid, Spain. Batbayar, N. 2004. Nesting ecology and breeding success of cinereous vultures (Aegypius monachus) in central Mongolia. M.S. Thesis. Boise State University, Boise, Idaho, USA. Blanco, G., Traverso, J.M., Marchamalo, J. & Martínez, F. 1997. Interspecific and intraspecific aggression among griffon and cinereous vultures at nesting and foraging sites. J. Raptor Res. 31: 77-79. Del Hoyo, J., Elliott, A., & Sargatal, J. 1992. Handbook of the birds of the world: New world vultures to guinea fowl. Vol. 2. Lynx Edicions, Barcelona. 640 pp. Donazar, J.A., Hiraldo, F. & Bustamante, J. 1993. Factors influencing nest site selection, breeding density and breeding success in the bearded vulture (Gypaetus barbatus). J. Appl. Ecol. 30:504-514. Donázar, J.A., Blanco, G., Hiraldo, F., Soto-Largo, E. & Oria, J. 2002. Effects of forestry and other land-use practices on the conservation of cinereous vultures. Ecol. Appl. 12: 1445-1456. Fargallo, J.A., Blanco, G. & Soto-Largo, E. 1998. Forest management effects on nesting habitat selected by Eurasian black vultures (Aegypius monachus) in central Spain. J. Raptor Res. 32: 202-207. IUCN. 2004. 2004 IUCN Red List of Threatened Animals. www.redlist.org. IUCN, Gland, Switzerland. Mandakh, B., Wingard, G. & Reading, R. 2005. Winter pasture conditions and forage use by argali (Ovis ammon) in Gobi Gurvansaikhan National Park. Erforsch Biol. Ress. Mongolei, Halle (Saale) 9: 71-76. Myagmarsuren, D. (ed.). 2000. Special protected areas of Mongolia. Mongolian Environmental Protection Agency and GTZ (the German Technical Advisory Agency). Ulaanbaatar, Mongolia. Parra, J. & Tellería, J.L. 2004. The increase in the Spanish population of griffon vulture Gyps fulvus during 1989-1999: effects of food and nest site availability. Bird Conserv. Internat. 14: 33-41.

Cinereous Vulture Nesting Ecology Poirazidis, K., Goutner, V., Skartsi, T. & Stamou, G. 2004. Modelling nesting habitat as a conservation tool for the Eurasian black vulture (Aegypius monachus) in Dadia Nature Reserve, northeastern Greece. Biol. Conserv. 118: 235-248. Sarà, M. & Di Vittorio, M. 2003. Factors influencing the distribution, abundance and nest-site selection of an endangered Egyptian vulture (Neophron percnopterus) population in Sicily. Animal Conserv. 6: 317-328. Steenhof, K. 1987.Assessing raptor reproductive success and productivity. In: Raptor Management Techniques Manual. (Ed. by B.G. Pendleton, B.A. Millsap, K.W. Cline & D.M. Bird). Pp 157-170. National Wildlife Federation, Washington D.C., National Wildlife Federation Scientific and Technical Series No. 10. Õóðààíãóé Õàð áóþó íîõîé òàñ (Aegypius monachus) íü Åâðîàçèéí òîìîîõîí ìàõ èí øóâóóäûí íýã áºãººä ýíý ç éë Ìîíãîë áîëîí áóñàä óëñàä õàðüöàíãóé áàãà ñóäëàãäñàí þì. Áèä õàð òàñíû ðëýëòèéí ýêîëîãèéí ñóäàëãààã Äîðíîãîâü àéìãèéí íóòàãò áàéðëàõ Èõ Íàðòûí óëóó õýìýýõ áàéãàëèéí íººö ãàçàðò õèéæ ã éöýòãýâ. Òàñûí íºõºí òºëæèëòèéã òîãòîîõûí òóëä ñóäàëãààíä õàìðàãäñàí íóòàãò îðøèõ ýçýíòýé ðí äèéã òîãòîîæ, òýäãýýðèéã òîäîðõîé õóãàöààíû äàâòàìæòàéãààð õÿíàæ òóõàéí ð áàéíãà àøèãëàãäàæ áàéãàà ýñýõèéã òîãòîîâ. Ò í ëýí ðí äèéã õýìæèæ, ìºí òàñûí àíãàéõàéí áèåèéí õýìæýý áà æèíã òîäîðõîé õóãàöààíû äàâòàìæòàéãààð õýìæèæ òîäîðõîéëæ áàéâ. 2003 îíä íèéò 42 àìüäðàëòàé ðèéã (27 ð íü õàä óëóóí äýýð, 15 ð íü ìîäîí äýýð áàéðëàëòàé), 2004 îíä 19 ðèéã (14 ð íü õàä óëóóí äýýð, 5 ð íü ìîäîí äýýð áàéðëàëòàé) èëð ëñýí þì. Àøèãëàãäàæ áóé ðíèé äóíäàæ ýçýëõ í 3.92 ±0.39 m 3 (n=36) áàéâ. Èõýíõ òîõèîëäîëä ðí ä äýõ ºíäºã áîéæèæ àìæèëã é õîðîãäñîíòîé õîëáîãäîæ ðí ä ýçýíã é áîëæ áàéñàí áºãººä õàðèí àíãààõàé áîéæèæ ãàðñíààñ ðíèé àøèãëàëò ýðñ íýìýãäýæ áàéâ. ªíäºãíººñ áîéæèæ ãàðñíààñ õîéø ºäëºõ õ ðòýëýý òàñûí àíãààõàé øóãàìàí áàéäëààð áóþó æèãä ºñºëòòýé áàéâ. Áèä òàñûí àíãààõàéíû ºñºëòèéí ìóðóéã ãàðãàñàí áºãººä ýíý íü áîéæèëòûí àëü íýãýí å äýõ àíãààõàéí áèåèéí äóíäàæ õýìæýýã òîäîðõîéëîõ áîëîìæèéã îëãîæ áàéãàà þì. Òàñûã õàìãààëàõ éë àæèëëàãààã ð ä íòýé áîëãîõîä ò íèé ðëýëòèéí ýêîëîãèéí ñóäàëãàà øààðäàãäàõ áºãººä áèä öààøèä ìîíèòîðèíãèéí ñóäàëãààãàà ðãýëæë ëýí íýìýëò ìýäýýëýë öóãëóóëæ, òàñûí ºíäºãºº äàðàõ áîëîí àíãààõàéíû ºäëºõ õóãàöàà, ðíèé ýçýíã é áîëäãèéí øàëòãààí çýðãèéã òîäîðõîéëîõîîð òºëºâëºæ áàéíà. Received: 24 March 2005 Accepted: 16 May 2005 19