Sexual Dichromatism in the Northern Map Turtle, Graptemys geographica CONSTANCE M. O CONNOR 1,4, AND GABRIEL BLOUIN-DEMERS 3

Similar documents
Cryptic sexual dichromatism occurs across multiple types of plumage in the Green-backed Tit Parus monticolus

Carotenoid-based breast plumage colour, body condition and clutch size in red fodies (Foudia madagascariensis)

Blue, not UV, plumage color is important in satin bowerbird Ptilonorhynchus violaceus display

Bio4009 : Projet de recherche/research project

MA41 Colour variability and the ecological use of colour in the chameleons and geckos of Mahamavo

doi: /

VARIATION IN PLUMAGE COLORATION OF EASTERN BLUEBIRDS (SIALIS SIALIS) IN RELATION TO WEATHER AND GEOGRAPHY. Mary-Catherine Warnock.

Achromatic plumage reflectance predicts reproductive success in male black-capped chickadees

PSY 2364 Animal Communication. Elk (Cervus canadensis) Extra credit assignment. Sad Underwing (Catocala maestosa) 10/11/2017

NATURAL AND SEXUAL VARIATION

The Evolution of Signal Design in Manakin Plumage Ornaments

Blue structural coloration of male eastern bluebirds Sialia sialis predicts incubation provisioning to females

Supplementary Materials for

Within-Male Melanin-Based Plumage and Bill Elaboration in Male House Sparrows

The reproductive role hypothesis explains trophic. morphology dimorphism in the northern map turtle

Variable visual habitats may influence the spread of colourful plumage across an avian hybrid zone

CHELONIAN CONSERVATION AND BIOLOGY International Journal of Turtle and Tortoise Research

Sexual size dimorphism and diet specialization in the common map turtle (Graptemys geographica) Marie-Ange Gravel

SEXUAL SELECTION ON PLUMAGE COLOR IN A NORTH CAROLINA POPULATION OF EASTERN BLUEBIRDS. Callie Lynn Younginer. Honors Thesis

CAROTENOID-BASED DEWLAP COLOR AS A VISUAL SIGNAL IN SOCIAL. COMMUNICATION OF BROWN ANOLES (Norops sagrei) John Edward Steffen

An experimental test of female choice relative to male structural coloration in eastern bluebirds

ECOL /8/2019. Why do birds have colorful plumage? Today s Outline. Evolution of Animal Form & Function. 1. Functions of Colorful Plumage

The effect of testosterone injections on aggression and begging behaviour of black headed gull chicks (Larus ridibundus)

Color Vision by Prof/Faten zakareia King Saud University Physiology Dept

Carotenoid-based plumage coloration and aggression during molt in male house finches

From ethology to sexual selection: trends in animal behavior research. Animal behavior then & now

Factors influencing parasite load in male ornate tree lizards (Urosaurus ornatus): throat colour, population density, and habitat type

Plumage and its Function in birds

Everyday Mysteries: Why most male birds are more colorful than females

Preening, plumage reflectance and female choice in budgerigars

Objectives: Outline: Idaho Amphibians and Reptiles. Characteristics of Amphibians. Types and Numbers of Amphibians

Rubber Boas in Radium Hot Springs: Habitat, Inventory, and Management Strategies

A case of achromatopsia. Perceptual Colour Space. Spectral Properties of Light. Subtractive Colour Mixture. Additive Colour Mixture

Perception & Attention Course. George Mather

Pierre-Paul Bitton and Russell D. Dawson

Structural and melanin coloration indicate parental effort and reproductive success in male eastern bluebirds

Migration. Migration = a form of dispersal which involves movement away from and subsequent return to the same location, typically on an annual basis.

CARRY-OVER EFFECTS IN AMERICAN REDSTARTS: IMPLICATIONS FOR SEXUAL SELECTION AND BEHAVIOUR MATTHEW WILLIAM REUDINK

[ Post a Response Precious Fids Chat ] Novel Chemistry at Work To Provide Parrot's Vibrant Red Colors.

Lizard malaria: cost to vertebrate host's reproductive success

NOTES ON THE ECOLOGY AND NATURAL HISTORY OF TWO SPECIES OF EGERNIA (SCINCIDAE) IN WESTERN AUSTRALIA

6. The lifetime Darwinian fitness of one organism is greater than that of another organism if: A. it lives longer than the other B. it is able to outc

Station 1 1. (3 points) Identification: Station 2 6. (3 points) Identification:

Weaver Dunes, Minnesota

Differences in Visual Signal Design and Detectability between Allopatric Populations of Anolis Lizards

STUDY BEHAVIOR OF CERTAIN PARAMETERS AFFECTING ASSESSMENT OF THE QUALITY OF QUAIL EGGS BY COMPUTER VISION SYSTEM

Dacnis cayana (Blue Dacnis or Turquoise Honeycreeper)

Sheikh Muhammad Abdur Rashid Population ecology and management of Water Monitors, Varanus salvator (Laurenti 1768) at Sungei Buloh Wetland Reserve,

Avian Ecology: Life History, Breeding Seasons, & Territories

Gulf and Caribbean Research

CAUSES AND CONSEQUENCES OF BLUE-GREEN EGGSHELL COLOUR VARIATION IN MOUNTAIN BLUEBIRDS (SIALIA CURRUCOIDES) Jeannine A. Randall

Anas clypeata (Northern Shoveler)

TESTIS MASS AND SUBADULT PLUMAGE IN BLACK-HEADED GROSBEAKS

Optimizing lighting for precision broiler breeder feeding. Grégory Bédécarrats Department of Animal Biosciences University of Guelph

Acutely Restricting Nutrition Causes Anovulation and Alters Endocrine Function in Beef Heifers

Sexy smells Featured scientist: Danielle Whittaker from Michigan State University

Sexual Dichromatism in the Blue-fronted Amazon Parrot (Amazona aestiva) Revealed by Multiple-angle Spectrometry

A test of the thermal coadaptation hypothesis in the common map turtle (Graptemys geographica) Elad Ben-Ezra. Supervisor: Dr. Gabriel Blouin-Demers

Long-Term Selection for Body Weight in Japanese Quail Under Different Environments

Brightness variability in the white badge of the eagle owl Bubo bubo

How Does Photostimulation Age Alter the Interaction Between Body Size and a Bonus Feeding Program During Sexual Maturation?

How to reduce the costs of ornaments without reducing their effectiveness? An example of a mechanism from carotenoid-based plumage

Evolution of Birds. Summary:

PROBABLE NON-BREEDERS AMONG FEMALE BLUE GROUSE

The evolutionary significance of plumage variability in

Evolution of Avian Plumage Color in a Tetrahedral Color Space: A Phylogenetic Analysis of New World Buntings

Evolution of sexual dichromatism: contribution of carotenoid- versus melanin-based coloration

Appendix from T. J. Ord and J. A. Stamps, Species Identity Cues in Animal Communication

Ciccaba virgata (Mottled Owl)

Research Thesis. by Nathaniel J. Sackinger. The Ohio State University June 2013

Diet quality affects an attractive white plumage pattern in dark-eyed juncos (Junco hyemalis)

Dietary carotenoids mediate a trade-off between egg quantity and quality in Japanese quail

Colour in a new light: a spectral perspective on the quantitative genetics of carotenoid colouration

What causes lizards brains to change size?

Fact Sheet: Oustalet s Chameleon Furcifer oustaleti

Animal Behaviour 78 (2009) Contents lists available at ScienceDirect. Animal Behaviour. journal homepage:

Teaching Workshop: Color Vision in Primates and Other Mammals

A Natural Experiment on the Condition-Dependence of Achromatic Plumage Reflectance in Black-Capped Chickadees

Temperature-dependent colour change is a function of sex and directionality of temperature shift in the eastern fence lizard (Sceloporus undulatus)

Lecture 9 - Avian Life Histories

Developmental environment has long-lasting effects on behavioural performance in two turtles with environmental sex determination

STATISTICAL REPORT. Preliminary Analysis of the Second Collaborative Study of the Hard Surface Carrier Test

J.K. McCoy CURRICULUM VITAE. J. Kelly McCoy. Department of Biology Angelo State University San Angelo, TX

Ultraviolet reflectance and cryptic sexual dichromatism in the ocellated lizard, Lacerta (Timon) lepida (Squamata: Lacertidae)bij_

The Recent Nesting History of the Bald Eagle in Rondeau Provincial Park, Ontario.

DOES EXPERIMENTALLY INDUCED CONSPICUOUS COLORATION INCREASE RISK OF PREDATION AND CONSPECIFIC AGGRESSION IN FIRST-YEAR COLLARED LIZARD MALES?

Ohio Biological Survey Notes 3: 21-28, Ohio Biological Survey, Inc.

FEATURE ARTICLES SEXUAL DICHROMATISM, DIMORPHISM, AND CONDITION- DEPENDENT COLORATION IN BLUE-TAILED BEE-EATERS

ARE DEWLAP COLOR AND DISPLAY BEHAVIOR HONEST INDICATORS OF MALE QUALITY IN ANOLIS LIZARDS?

Analysis of Sampling Technique Used to Investigate Matching of Dorsal Coloration of Pacific Tree Frogs Hyla regilla with Substrate Color

Diurnal variation in microfilaremia in cats experimentally infected with larvae of

Trevor DeVries Dr. Trevor DeVries is an Associate Professor in the Department of Animal and Poultry Science at the University of Guelph.

NOTES ON THE ECOLOGY AND NATURAL HISTORY OF CTENOPHORUS CAUDICINCTUS (AGAMIDAE) IN WESTERN AUSTRALIA

Local Grains and Free-Choice Feeding of Organic Layer Hens on Pasture at UBC Farm Introduction

Effects of nestling condition on UV plumage traits in blue tits: an experimental approach

Color variation in museum specimens of birds: effects of stress, pigmentation, and duration of storage

Spectral mouth colour of nestlings changes with

The Brain and Senses. Birds perceive the world differently than humans. Avian intelligence. Novel feeding behaviors

STATUS SIGNALING IN DARK-EYED JUNCOS

Evolution in Action: Graphing and Statistics

Transcription:

NOTES AND FIELD REPORTS 187 2 Centre for Applied Conservation Research, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada [r.germain@alumni.ubc.ca]; 3 Department of Biology, University of Ottawa, 30 Marie-Curie, Ottawa, Ontario K1N 6N5, Canada [gblouin@uottawa.ca]; 4 Present address: Department of Psychology, Neuroscience and Behaviour, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada [coconn@mcmaster.ca] ABSTRACT. Sexual dichromatism is common in many animal taxa, but little quantitative information on sexual dichromatism is available for turtles. We quantified sexual dichromatism in the postorbital spots of northern map turtles (Graptemys geographica) using reflectance spectrometry and examined the relationship between postorbital spot coloration and circulating testosterone among males. We found that the coloration of postorbital spots differs between the sexes, with adult males exhibiting brighter spots than adult females. However, adult males and juvenile females did not exibit siginficant differences in coloration, and testosterone levels did not explain the variation in postorbital spot coloration among males. Chelonian Conservation and Biology, 2013, 12(1): 187 192 g 2013 Chelonian Research Foundation Sexual Dichromatism in the Northern Map Turtle, Graptemys geographica GRÉGORY BULTÉ 1,RYAN R. GERMAIN 2, CONSTANCE M. O CONNOR 1,4, AND GABRIEL BLOUIN-DEMERS 3 1 Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada [gregory_bulte@carleton.ca]; In a wide range of animal taxa, males are more conspicuously colored than females. Intersexual differences in coloration (sexual dichromatism) is typically interpreted as a consequence of sexual selection (Andersson 1994). Indeed, in many species females choose their mates based on some attributes of their coloration (e.g., McGraw et al. 2001; Stein and Uy 2006; Reudink et al. 2009). While many examples of spectacular sexual dicromatism exist, dichromatism that is subtle or even undetectable to the human eye can be functionally meaningful for communication and sexual selection (Mennill et al. 2003; Eaton 2005). Quantifying sexual dichromatism can thus provide insights into traits potentially involved in mate choice. Sexual dichromatism is known in chelonians (reviewed by Moll et al. 1981), but there is little quantitative information available on dichromatism in this group. We quantified sexual dichromatism in the postorbital spots of the northern map turtle (Graptemys geographica). The function of these yellow spots is unknown, but they may be involved in intersexual communication and sexual selection because male northern map turtles bob their heads in front of females prior to copulation (Vogt 1980). We used reflectance spectrometry to quantify the coloration of postorbital spots and tested for the presence of sexual dichromatism in northern map turtles. In addition to quantifying sexual dichromatism, we explored whether levels of circulating testoterone can explain part of the variation in postorbital spot coloration among male northern map turtles. Circulating testosterone may be an indicator of male quality and is positively correlated with elaborate color in males across a wide

188 CHELONIAN CONSERVATION AND BIOLOGY, Volume 12, Number 1 2013 variety of taxa (Ligon et al. 1990; Rand 1990, 1992; see metanalysis by Roberts et al. 2004). Thus, we examined the relationship between male postorbital spot coloration and circulating testosterone to determine whether coloration in male northern map turtles is a testosteronedependent trait. METHODS During the mating season in 2009 (September), we captured 56 northern map turtles in Lake Opinicon (lat 44u349N, long 76u199W), Ontario, Canada. Turtles were captured by hand while snorkeling and brought back to the laboratory for standard morphological measurements, color measurement, and blood sampling. Turtles were separated into 3 classes: adult females (n 5 9), juvenile females (n 5 11), and adult males (n 5 36). We did not include immature males. Sexual maturity in females was determined from plastron length; in our study population, the minimum size at maturity in females is 193 mm (Bulté and Blouin-Demers 2009). Color Measurement and Analysis. We measured reflectance spectra for postorbital spots of all captured turtles using a PX-2 pulsed xenon light source attached to an Ocean Optics USB2000+ spectrometer (Dunedin, FL). We took 10 readings throughout the yellow region of each postorbital spot (left and right) for a total of 20 readings from each individual. We then grouped raw reflectance data into 10-nm bins from 380 to 700 nm using CLR version 1.0.3 (Montgomerie 2008) and averaged across the 20 measurements for each individual. For our analysis, we quantified the coloration of postorbital spots using the standard coloration variables of hue, saturation, and brightness. In general terms, hue (also known as spectral location ) is measured as the wavelength along the visible spectrum which contributes most to what we perceive as the color of an object and is a correlate of the shape of a reflectance spectrum (Endler 1990; Montgomerie 2006). Hue is calculated as the following: Hue~arctan R y {R b Rt Rr {R g Rt, where R is the reflectance of each segment of the spectrum: yellow (y) 5 550 625 nm, blue (b) 5 400 475 nm, red (r) 5 625 700 nm, green (g) 5 475 550 nm, and total (t) 5 380 700 nm (Saks et al. 2003). Chroma (the purity or saturation of a color) is the degree to which a color is composed of a single wavelength and is a function of how rapidly reflectance intensity changes with wavelength (Endler 1990; Montgomerie 2006). Chroma is most often used to describe the relative saturation of color within a specific region of interest in the visible spectrum, typically that with the steepest reflectance slope (Endler 1990; Montgomerie 2006). Here, we calculated chroma in the yellow region of the visual spectrum by the following general equation: Yellow chroma ðsaturationþ~r y Rt, where y and t equal reflectance in the yellow region of the spectrum and total reflectance, as above (Montgomerie 2006). Finally, brightness (or spectral intensity ) is a measure of the total amount of light being reflected from a unit area, measured as the area under the spectral reflectance curve (Montgomerie 2006). Brightness is calculated in the following way: Brightness~ Xl min l max ~R i =n, where i is the reflectance (R) of each wavelength (l) divided by the total number (n) of wavelengths (Montgomerie 2006). We measured reflectance in the ultraviolet (UV) range (300 379 nm), but preliminary examination of the data indicated that both sexes exhibit minimal reflectance in this range (Fig. 1). We thus excluded UV reflectance from our calculations, limiting our measures of hue, saturation, and brightness to the 380 700-nm range of the light spectrum (i.e., the typical vertebrate trichromatic visual system). Testosterone Analysis. We collected 0.3 0.5 ml of blood from the cervical sinus of 32 males using heparinized 1-ml syringes mounted with 25-gauge needles to determine the concentration of circulating testosterone in the blood. Turtles were sampled within 1 hr of capture. Blood samples were held in ice-water slurries for no more than 1 hr and then centrifuged at 10,000 3 g for 5 min (Compact II Centrifuge, Clay Adams, NJ). Plasma samples were flash-frozen in liquid nitrogen and stored at 280uC until analysis. For measurements of circulating testosterone, plasma samples were extracted 3 times using 5 ml ethyl acetate and the dried extract was resuspended in phosphate-buffered saline (ph 7.6) containing 0.3% gelatin and measured in duplicate by 3 H-radioimmunoassay following the methods outlined in McMaster et al. (1992). Statistical Analyses. For our analysis of coloration, we divided turtles into 3 groups: adult males, adult females, and juvenile females. We used a multivariate analysis of variance (MANOVA) to test for differences in coloration (hue, saturation, and brightness) among the groups. Because the group effect was significant in the MANOVA, we then performed univariate analyses to compare each of the color measures across the 3 age/sex groups. Finally, we determined if levels of circulating testosterone in males were related to coloration using correlation analysis. We performed all statistical analyses with JMP version 5.0.1a (SAS Institute 2002).

NOTES AND FIELD REPORTS 189 Table 1. Results of univariate analysis of variance testing the effect of groups (adult males, adult females, juvenile females) on color variables in northern map turtles. Source df F p r 2 Brightness 2,53 9.00 0.0004 0.25 Yellow chroma 2,53 40.61, 0.0001 0.60 Hue 2,53 4.37 0.0170 0.14 Figure 1. Percentage of reflectance of the postorbital spot as a function of wavelength for adult male (solid black line), adult female (solid grey line), and juvenile female (dashed grey line) northern map turtles from Lake Opinicon. Values are based on mean reflectance curves for all individuals of each sex. Error bars indicate 95% confidence intervals. RESULTS The complete MANOVA model comparing hue, yellow chroma, and brightness among the 3 groups (adult males, adult females, and juvenile females) indicated a statistically significant difference in coloration among groups (Wilk s l 6,102 5 0.36, p, 0.0001). Pairwise comparisons between groups indicated no significant difference between adult males and juvenile females (F 3,51 5 2.07, p 5 0.11), but signifcant differences between adult males and adult females (F 3,51 5 28.75, p, 0.001) and between adult and juvenile females (F 3,51 5 12.74, p, 0.001). Univariate analysis of variance followed by HSD-Tukey pairwise comparisons indicated that there were significant differences for all 3 color variables between adult males and adult females, no differences between adult males and juvenile females, and a difference in hue but not in yellow chroma or brightness between juvenile and adult females (Table 1; Fig. 2). The correlations between the level of circulating testoterone and the 3 color variables in male northern map turtles were nonsignificant (all p. 0.52). DISCUSSION The goal of this study was to identify sexual dichromatism in the postorbital spots of northern map turtles using spectral reflectance and to investigate the relationship between male postorbital spot coloration and levels of circulating testosterone. We found that postorbital spots were clearly dichromatic between adult males and adult females. The postorbital spots of adult males were significantly brighter and more saturated in yellow pigment than those of adult females and had significantly lower scores of hue. These results indicate that adult males express a brighter, richer, and more yellow-shifted coloration of their postorbital head spots than adult females. Sexually dimorphic traits are commonly involved in sexual selection (e.g., Salvador et al. 1997; McGraw et al. 2001; Stein and Uy 2005; Reudink et al. 2009). Male northern map turtles bob their heads in the vertical plane (Vogt 1980) in front of females during their courtship. Because they are dichromatic and located in an area that would be conspicuous during courtship, postorbital spots are potentially involved in intersexual selection. We did not find evidence that the coloration of postorbital spots in males was associated with the levels of circulating plasma testosterone. Testosterone plays a key role in mating and sexual behavior, as well as territorial and aggressive behavior in both male and female animals (reviewed by Norris and Jones 1987). In many species, higher testosterone levels are associated with higher male quality (e.g., males that are more attractive, or better able to defend a resource) or with more elaborate coloration (see metanalysis by Roberts et al. 2004). In reptiles, elevated circulating testosterone is typically associated with more elaborate sexual ornamentation (e.g., Cooper et al. 1987; Moore et al. 1998). However, we did not find the predicted relationship between male coloration and testosterone levels in northern map turtles. Interestingly, most of the work examining the relationship between coloration and testosterone levels in reptiles has been conducted in territorial species (e.g., Cooper et al. 1987; Moore et al. 1998; Salvador and Veiga 2000). To our knowledge, northern map turtles are not territorial and do not engage in male male combat to secure mating opportunities. Since testosterone is important for both sexual and territorial behavior, it is possible that the relationship between elaborate traits and testosterone is stronger in territorial species. Further research exploring the relationship between elaborate coloration and testosterone in a variety of nonterritorial species is necessary to explore this possibility. Although testorone did not explain the interindividual variation in coloration in males, it may be involved in the development of sexual dichromatism and in the difference in coloration between adult and juvenile females. Testosterone has been demonstrated experimentally to influence the development of male coloration and sexual dichromatism in lizards (Cox et al. 2005, 2008). In turtles, young females have also been shown to

190 CHELONIAN CONSERVATION AND BIOLOGY, Volume 12, Number 1 2013 Figure 2. Box plots of a) brightness, b) yellow chroma, and c) hue across 3 groups of age and sex (juvenile females: n 5 11, adult females: n 5 9, and adult males: n 5 36) in northern map turtles. Age/sex groups with the same letters on the x-axis did not differ in multiple pairwise comparisons (Tukey s HSD test). Horizontal box lines represent the median, 25th, and 75th percentiles; horizontal whisker lines represent the 10th and 90th percentiles. Open circles beyond horizontal lines represent outliers. produce eggs with higher levels of yolk testosterone than old females, suggesting that young females have higher circulating levels of testosterone during vitellogenesis than old females (Bowden et al. 2004). Experimental manipulation of hormone levels is now indicated in northern map turtles to determine the influence of hormones such as testosterone on the development of sexual dichromatism and the apparent ontogenetic shift in coloration in female map turtles noted in the current study. Finally, it is possible that other, unmeasured hormones are also related to dichromatism in northern map turtles. For example, progesterone has been linked to female coloration in some species of lizards (e.g., Cooper and Clarke 1982). Other proximate factors may also influence the development of sexual dichromatism in northern map turtles. Incubation temperature is known to influence coloration in Graptemys (Vogt 1993). Because males and females are produced at different incubation temperatures, dichromatism may be partly a consequence of incubation temperature. However, we found dichromatism to be more pronounced between adult males and adult females than between adult males and juvenile females, suggesting that factors others than incubation must be influencing the extent of dichromatism. Diet could also influence the coloration of the postorbital spots in northern map turtles. The expression of carotenoid-based coloration is known to be diet-dependent in some species and may signal a

NOTES AND FIELD REPORTS 191 male s overall condition and ability to forage (Hill and Montgomerie 1994; Keyser and Hill 1999). Interestingly, adult males and juvenile females do not differ in diet in our study population, whereas adult males and adult females do, with the males eating relatively more insects and the females relatively more molluscs (Bulté et al. 2008). Although carotenoids are commonly involved in yellow coloration, other pigments can also produce the same coloration (McGraw et al. 2006). We did not determine which pigments are involved in the yellow coloration of the postorbital spots of northern map turtles. Testing for the presence of carotenoids would provide more insights into the factors affecting the conditiondependent expression of the yellow coloration in northern map turtles. ACKNOWLEDGMENTS We are grateful to the staff of the Queen s University Biological Station for their logistical support. Thanks to P.R. Martin for the use of his spectral equipment and to J.A. Mennigan and V.L. Trudeau for their assistance and support with testosterone assays. Thanks to P.R. Martin and S.J. Cooke for providing comments on earlier versions of the manuscript. Financial support for G.B. was provided by the Ministry of Research and Innovation and the Fond Québecois de Recherche sur la Nature et les Technologies. Financial support for C.M.O. was provided by the Ministry of Research and Innovation and by Natural Sciences and Engineering Research Council Discovery Grants to S.J. Cooke and K.M. Gilmour. Our procedures were approved by the Animal Care Committee at Carleton University (protocol B09-27) and permits were provided by the Ontario Ministry of Natural Resources (permit 1045605). LITERATURE CITED ANDERSSON, M. 1994. Sexual Selection. Princeton, NJ: Princeton University Press, 601 pp. BOWDEN, R.M., HARMS, H.K., PAITZ, R.T., AND JANZEN, F.J. 2004. Does optimal egg size vary with demographic stage because of a physiological constraint? Functional Ecology 18:522 529. BULTÉ, G. AND BLOUIN-DEMERS, G. 2009. Does sexual bimaturation affect the cost of growth and the operational sex ratio in an extremely size dimorphic reptile? Écoscience 16:175 182. BULTÉ, G., GRAVEL, M.A., AND BLOUIN-DEMERS, G. 2008. Sexual dimorphism and intersexual niche divergence in northern map turtles (Graptemys geographica): the roles of diet and habitat use. Canadian Journal of Zoology 86:1235 1243. COOPER, W.E., JR. AND CLARKE, R.F. 1982. Steroidal induction of female reproductive coloration in the keeled earless lizard, Holbrookia propinqua. Journal of Herpetology 38:425 429. COOPER, W.E., JR., MENDONÇA, M.T., AND VITT, L.J. 1987. Induction of orange head coloration and activation of courtship and aggression by testosterone in the male broad-headed skink (Eumeces laticeps). Journal of Herpetology 21:96 101. COX, R.M., SKELLY, S.L., LEO, A., AND JOHN-ALDER, H.B. 2005. Testosterone regulates sexually dimorphic coloration in the eastern fence lizard, Sceloporus undulatus. Copeia 2005:597 608. COX, R.M., ZILBERMAN, V., AND JOHN-ALDER, H.B. 2008. Testosterone stimulates the expression of a social color signal in Yarrow s spiny lizard, Sceloporus jarrovii. Journal of Experimental Zoology 309A:505 514. EATON, M.D. 2005. Human vision fails to distinguish widespread sexual dichromatism among sexually monochromatic birds. Proceedings of the National Academy of Sciences of the United States of America 102:10942 10946. ENDLER, J.A. 1990. On the measurement and classification of colour in studies of animal colour patterns. Biological Journal of the Linnean Society 41:315 352. HILL, G.E. AND MONTGOMERIE, R. 1994. Plumage color signals nutritional condition in the house finch. Proceedings of the Royal Society of London Series B: Biological Sciences 258:47 52. KEYSER, A.J. AND HILL, G.E. 1999. Condition-dependent variation in the blue-ultraviolet coloration of a structurallybased plumage ornament. Proceedings of the Royal Society of London: Biological Sciences 266:771 777. LIGON, J.D., THORNHILL, R., ZUK, M., AND JOHNSON, K. 1990. Male male competition, ornamentation, and the role of testosterone in sexual selection in red jungle fowl. Animal Behaviour 40:367 373. MCGRAW, K.J., CRINO, O.L., MEDINA-JEREZ, W., AND NOLAN, P.M. 2006. Effect of dietary carotenoid supplementation on food intake and immune function in a songbird with no carotenoid coloration. Ethology 112:1209 1216. MCGRAW, K.J., STOEHR, A.M., NOLAN, P.M., AND HILL, G.E. 2001. Plumage redness predicts breeding onset and reproductive success in the house finch: a validation of Darwin s theory. Journal of Avian Biology 32:90 94. MCMASTER, M., MUNKITTRICK, K., AND VAN DERKRAAK, G. 1992. Protocol for measuring circulating levels of gonadal sex steroids in fish. Canadian Technical Reports in Fisheries and Aquatic Sciences 1836:1 29. MENNILL, D.J., DOUCET, S.M., MONTGOMERIE, R., AND RATCLIFFE, L. 2003. Achromatic color variation in black-capped chickadees, Poecile atricapilla: black and white signals of sex and rank. Behavioral Ecology and Sociobiology 53:350 357. MOLL, E.O., MATSON, K.E., AND KREHBIEL, E.B. 1981. Sexual and seasonal dichromatism in the Asian river turtle Callagur borneoensis. Herpetologica 37:181 194. MONTGOMERIE, R. 2006. Analyzing colors. In: Hill, G.E. and McGraw, K.J. (Eds.). Bird Coloration. Volume 1. Mechanisms and Measurements. Cambridge, MA: Harvard University Press, pp. 90 147. MONTGOMERIE, R. 2008. CLR, version 1.03. Kingston, ON: Queen s University. http://post.queensu.ca/,mont/color/. MOORE, M.C., HEWS, D.K., AND KNAPP, R. 1998. Hormonal control and evolution of alternative male phenotypes: generalizations of models for sexual differentation. American Zoologist 38:133 151. NORRIS, D.O. AND JONES, R.E. 1987. Hormones and Reproduction in Fishes, Amphibians, and Reptiles. New York: Springer- Verlag, 590 pp. RAND, M.S. 1990. Polymorphic sexual coloration in the lizard Sceloporus undulatus erythrocheilus. American Midland Naturalist 124:352 359. RAND, M.S. 1992. Hormonal control of polymorphic and sexually dimorphic coloration in the lizard Sceloporus undulatus erythrocheilus. General and Comparative Endocrinology 88:461 468. REUDINK, M.W., MARRA, P.P., BOAG, P.T., AND RATCLIFFE, L.M. 2009. Plumage coloration predicts paternity and polygyny in the American redstart. Animal Behaviour 77:495 501.

192 CHELONIAN CONSERVATION AND BIOLOGY, Volume 12, Number 1 2013 ROBERTS, M.L., BUCHANAN, K.L., AND EVANS, M.R. 2004. Testing the immunocompetence handicap hypothesis: a review of the evidence. Animal Behaviour 68:227 239. SAKS, L., MCGRAW, K., AND HÕRAK, P. 2003. How feather colour reflects its carotenoid content. Functional Ecology 17:555 561. SALVADOR, A. AND VEIGA, J.P. 2000. Does testosterone or coloration affect growth rates of adult males of the lizard Psammodromus algirus? Canadian Journal of Zoology 78: 1463 1467. SALVADOR, A., VEIGA, J.P., MARTIN, J., AND LOPEZ, P. 1997. Testosterone supplementation in subordinate small male lizards: consequences for aggressiveness, color development, and parasite load. Behavioural Ecology 8:135 139. SAS INSTITUTE 2002. JMP. Cary, NC: SAS Institute. STEIN, A.C. AND UY, J.A.C. 2006. Plumage brightness predicts male mating success in the lekking golden-collared manakin, Manacus vitellinus. Behavioral Ecology 17:41 47. VOGT, R.C. 1980. Natural history of the map turtles Graptemys pseudogeographica and G. ouachitensis in Wisconsin. Tulane Studies in Botany and Zoology 22:17 48. VOGT, R.C. 1993. Systematics of the false map turtle (Graptemys pseudogeographica complex, Reptilia, Testudines, Emydidae). Annals Carnegie Museum 62:1 46. Received: 31 January 2012 Revised and Accepted: 13 September 2012 Handling Editor: Peter V. Lindeman