A NEW GLIDING TETRAPOD (DIAPSIDA:?ARCHOSAUROMORPHA) FROM THE UPPER TRIASSIC (CARMAN) OF VIRGINIA

Similar documents
Anatomy. Name Section. The Vertebrate Skeleton

.56 m. (22 in.). COMPSOGNATHOID DINOSAUR FROM THE. Medicine Bow, Wyoming, by the American Museum Expedition

New Carnivorous Dinosaurs from the Upper Cretaceous of Mongolia

A new species of sauropod, Mamenchisaurus anyuensis sp. nov.

A new basal sauropodiform dinosaur from the Lower Jurassic of Yunnan Province, China

On the Discovery of the earliest fossil bird in China (Sinosauropteryx gen. nov.) and the origin of birds

Redpalh Museum, McGill University, Montreal, P.Q, Canada, HJA 2K6.

1/9/2013. Divisions of the Skeleton: Topic 8: Appendicular Skeleton. Appendicular Components. Appendicular Components

Lab 2 Skeletons and Locomotion

Biology 340 Comparative Embryology Lecture 12 Dr. Stuart Sumida. Evo-Devo Revisited. Development of the Tetrapod Limb

Animal Form and Function. Amphibians. United by several distinguishing apomorphies within the Vertebrata

Postilla PEABODY MUSEUM OF NATURAL HISTORY YALE UNIVERSITY NEW HAVEN, CONNECTICUT, U.S.A.

ireican%mluseum A Gliding Reptile from the Triassic of New Jersey'

Fish 2/26/13. Chordates 2. Sharks and Rays (about 470 species) Sharks etc Bony fish. Tetrapods. Osteichthans Lobe fins and lungfish

These small issues are easily addressed by small changes in wording, and should in no way delay publication of this first- rate paper.

FURTHER STUDIES ON TWO SKELETONS OF THE BLACK RIGHT WHALE IN THE NORTH PACIFIC

LEIDY, SHOWING THE BONES OF THE FEET 'AND LIMBS

A new carnosaur from Yongchuan County, Sichuan Province

Barney to Big Bird: The Origin of Birds. Caudipteryx. The fuzzy raptor. Solnhofen Limestone, cont d

A New and Unusual Aquatic Reptile from the Lockatong Formation of New Jersey (Late Triassic, Newark Supergroup)

Mammalogy Laboratory 1 - Mammalian Anatomy

UN? RSITYOF. ILLIiwiS LIBRARY AT URBANA-CHAMPAIGN NATURAL HIST. SURVEY

Title: Phylogenetic Methods and Vertebrate Phylogeny

AMERICAN NATURALIST. Vol. IX. -DECEMBER, No. 12. OR BIRDS WITH TEETH.1 OI)ONTORNITHES,

The Origin of Birds. Technical name for birds is Aves, and avian means of or concerning birds.

A R T I C L E S STRATIGRAPHIC DISTRIBUTION OF VERTEBRATE FOSSIL FOOTPRINTS COMPARED WITH BODY FOSSILS

8/19/2013. Topic 5: The Origin of Amniotes. What are some stem Amniotes? What are some stem Amniotes? The Amniotic Egg. What is an Amniote?

8/19/2013. Topic 4: The Origin of Tetrapods. Topic 4: The Origin of Tetrapods. The geological time scale. The geological time scale.

Non-Dinosaurians of the Mesozoic

Exceptional fossil preservation demonstrates a new mode of axial skeleton elongation in early ray-finned fishes

A Fossil Snake (Elaphe vulpina) From A Pliocene Ash Bed In Nebraska

What is a dinosaur? Reading Practice

Section 9.4. Animal bones from excavations at George St., Haymarket, Sydney

Vertebrate Locomotion: Aquatic

By HENRY FAIRFIELD OSBORN.

First Flightless Pterosaur

'Rain' of dead birds on central NJ lawns explained; Federal culling program killed up to 5,000 Associated Press, January 27, 2009

Test one stats. Mean Max 101


Origin and Evolution of Birds. Read: Chapters 1-3 in Gill but limited review of systematics

Tuesday, December 6, 11. Mesozoic Life

THE GORGONOPSIAN GENUS, HIPPOSAURUS, AND THE FAMILY ICTIDORHINIDAE * Dr. L.D. Boonstra. Paleontologist, South African Museum, Cape Town

d a Name Vertebrate Evolution - Exam 2 1. (12) Fill in the blanks

A NEW ANKYLOSAUR FROM THE UPPER CRETACEOUS OF MONGOLIA E.A. Maleev Doklady Akademii Nauk, SSSR 87:

Red Eared Slider Secrets. Although Most Red-Eared Sliders Can Live Up to Years, Most WILL NOT Survive Two Years!

Field Trip: Harvard Museum of Natural History (HMNH)

May 10, SWBAT analyze and evaluate the scientific evidence provided by the fossil record.

AMERICAN MUSEUM NOVITATES

Diapsida. BIO2135 Animal Form and Function. Page 1. Diapsida (Reptilia, Sauropsida) Amniote eggs. Amniote egg. Temporal fenestra.

HONR219D Due 3/29/16 Homework VI

Diapsida. BIO2135 Animal Form and Function. Page 1. Diapsida (Reptilia, Sauropsida) Amniote egg. Membranes. Vertebrate phylogeny

A Pterodactylus with Remains of Flight Membrane. by F. Broili (with 3 plates). Read at the Conference on 7th February 1925.

oxfitates }Ji2zercanAuseum The Triassic Dinosaur Genera Podokesaurus and Coelophysis BY EDWIN H. COLBERT'

Burgess Shale ~530 Ma. Eukaryotic Organisms. Pikaia gracilens. Chordates. first chordate? Vertebrates

Tetrapod Similarites The Origins of Birds

PRELIMINARY REPORT ON A CLUTCH OF SIX DINOSAURIAN EGGS FROM THE UPPER TRIASSIC ELLIO T FORMATION, NORTHERN ORANGE FREE STATE. J. W.

First Ornithomimid (Theropoda, Ornithomimosauria) from the Upper Cretaceous Djadokhta Formation of Tögrögiin Shiree, Mongolia

INSTITUTE FOR STRATEGIC BIOSPHERIC STUDIES CONFERENCE CENTER HUNTSVILLE, TEXAS

Erycine Boids from the Early Oligocene of the South Dakota Badlands

POSTILLA PEABODY MUSEUM YALE UNIVERSITY NUMBER IS? 19 JULY 1972

8/19/2013. Topic 14: Body support & locomotion. What structures are used for locomotion? What structures are used for locomotion?

AN ANNOTATED AND ILLUSTRATED CATALOGUE OF SOLNHOFEN (UPPER JURASSIC, GERMANY) PTEROSAUR SPECIMENS AT CARNEGIE MUSEUM OF NATURAL HISTORY

Comparative Vertebrate Anatomy

NOTES ON THE FIRST SKULL AND JAWS OF RIOJASAURUS INCERTUS (DINOSAURIA, PROSAUROPODA, MELANOROSAURIDAE) OF THE LATE TRIASSIC OF LA RIOJA, ARGENTINA

TAXONOMIC HIERARCHY. science of classification and naming of organisms

SUPPLEMENTARY INFORMATION

Origin and Evolution of Birds. Read: Chapters 1-3 in Gill but limited review of systematics

Juehuaornis gen. nov.

Williston, and as there are many fairly good specimens in the American

First reptile appeared in the Carboniferous

Video Assignments. Microraptor PBS The Four-winged Dinosaur Mark Davis SUNY Cortland Library Online

Introduction and methods will follow the same guidelines as for the draft

A NEW PLIENSBACHIAN ICHTHYOSAUR FROM DORSET, ENGLAND

Reprinted from: CRUSTACEANA, Vol. 32, Part 2, 1977 LEIDEN E. J. BRILL

On the morphoplogy and taxonomic status of Xinpusaurus kohi JIANG et al., 2004 (Diapsida: Thalattosauria) from the Upper Triassic of China

eschweizerbartxxx author

A new Middle Jurassic sauropod subfamily (Klamelisaurinae subfam. nov.) from Xinjiang Autonomous Region, China

Guidelines for Type Classification of Cattle and Buffalo

A new species of torrent toad (Genus Silent Valley, S. India

TOPOTYPES OF TYPOTHORAX COCCINARUM, A LATE TRIASSIC AETOSAUR FROM THE AMERICAN SOUTHWEST

THE SKELETON RECONSTRUCTION OF BRACHIOSAURUS BRANCAI

The Animal Bones from. Under Whitle, Sheen, Staffordshire

REVISION OF REDONDASUCHUS (ARCHOSAURIA: AETOSAURIA) FROM THE UPPER TRIASSIC REDONDA FORMATION, NEW MEXICO, WITH DESCRIPTION OF A NEW SPECIES

Amniote Relationships. Reptilian Ancestor. Reptilia. Mesosuarus freshwater dwelling reptile

UPOGEBIA LINCOLNI SP. NOV. (DECAPODA, THALASSINIDEA, UPOGEBIIDAE) FROM JAVA, INDONESIA

A Lymphosarcoma in an Atlantic Salmon (Salmo salar)

Discovery of an Avialae bird from China, Shenzhouraptor sinensis gen. et sp. nov.

BEHAVIORAL AND PALEOENVIRONMENTAL IMPLICATIONS OF REPTILE SWIM TRACKS FROM THE EARLY TRIASSIC OF WESTERN NORTH AMERICA

A new species of Confuciusornis from Lower Cretaceous of Jianchang Liaoning China

Adaptations: Changes Through Time

HERRERASAURIDAE, A NEW FAMILY OF TRIASSIC SAURISCHIANS. By JUAN LUIS BENEDETTO * INTRODUCTION

( M amenchisaurus youngi Pi, Ouyang et Ye, 1996)

Name: GEOL 104 Dinosaurs: A Natural History Video Assignment. DUE: Wed. Oct. 20

Shedding Light on the Dinosaur-Bird Connection

78 Renesto S. & Binelli G. cranial skeleton, in fact the holotype of Megalancosaurus (Renesto & Dalla Vecchia 2005) has the skull preserved but lacks

PART FOUR: ANATOMY. Anatomy, Conformation and Movement of Dogs 41

Supplementary Figure 1 Cartilaginous stages in non-avian amniotes. (a) Drawing of early ankle development of Alligator mississippiensis, as reported

Morphologic study of dog flea species by scanning electron microscopy

THE SKULLS OF ARAEOSCELIS AND CASEA, PERMIAN REPTILES

The Triassic Transition

Transcription:

A NEW GLIDING TETRAPOD (DIAPSIDA:?ARCHOSAUROMORPHA) FROM THE UPPER TRIASSIC (CARMAN) OF VIRGINIA Authors: N. C. FRASER, P. E. OLSEN, A. C. DOOLEY, and T. R. RYAN Source: Journal of Vertebrate Paleontology, 27(2) : 261-265 Published By: Society of Vertebrate Paleontology URL: https://doi.org/10.1671/0272-4634(2007)27[261:angtda]2.0.co;2 BioOne Complete (complete.bioone.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.

Journal of Vertebrate Paleontology 27(2):261 265, June 2007 2007 by the Society of Vertebrate Paleontology FEATURED ARTICLE A NEW GLIDING TETRAPOD (DIAPSIDA:?ARCHOSAUROMORPHA) FROM THE UPPER TRIASSIC (CARNIAN) OF VIRGINIA N. C. FRASER *,1, P. E. OLSEN 2, A. C. DOOLEY JR. 1, and T. R. RYAN 3 1 Virginia Museum of Natural History, Martinsville, Virginia 24112 U.S.A., Nick.Fraser@vmnh.virginia.gov 2 Lamont Doherty Earth Observatory, Columbia University, Palisades, New York 10964 U.S.A. 3 Department of Anthropology and Center for Quantitative Imaging, Pennsylvania State University Park, Pennsylvania 16802 U.S.A. A new tetrapod taxon from the Upper Triassic Cow Branch Formation of Virginia is described solely on the basis of computed tomography (CT) scans of 2 individuals. The new form is characterized by the presence of extremely elongate thoracolumbar ribs that presumably supported a gliding membrane in life. It differs from all other known gliding tetrapods in possessing a very pronounced elongate neck. The grasping hindfoot is consistent with an arboreal habit. A gliding habit has been reported in a handful of fossil reptiles, with the oldest occurrence in Coelurosauravus (Carroll, 1978; Evans, 1982: Evans and Haubold, 1987) from the Permian of Europe and Africa. Elongate ribs were originally described in this form and these were thought to have supported a gliding membrane in life, but it has since been shown that the membrane-supporting structures are not true ribs, but separate bundles of rodlike neomorph ossifications (Frey et al., 1997). However, 3 closely related forms (Icarosaurus, Kuehneosaurus and Kuehneosuchus) from the Upper Triassic of Europe and North America do have exceptionally elongate thoracolumbar ribs, and all have been referred to a single family, the Kuehneosauridae (Robinson, 1962; Colbert, 1970). They are further characterized by the ribs forming hinge joints with the markedly elongate transverse processes on the dorsal vertebrae. This contrasts with the living gliding agamid Draco (Colbert, 1970), in which the elongate thoracolumbar ribs are flexible and lack the hinge-joint with the vertebral transverse processes. A fourth Triassic tetrapod, Sharovipteryx from the Triassic of Kirghizia, also possessed a gliding membrane (Gans et al., 1987) but in this form it is stretched between the hind limbs. Here we describe a new Triassic tetrapod with elongate ribs that is comparable in size to the contemporaneous Icarosaurus, but differs significantly from kuehneosaurs in having a long neck, a character that is potentially very unstable in a gliding animal. The 2 specimens of the new tetrapod were recovered from Carnian exposures at the Virginia Solite Quarry at Cascade, straddling the North Carolina-Virginia state line (Olsen, 1979). The locality comprises 3 separate quarries that together contain excellent exposures of the Cow Branch Formation (Fraser and Grimaldi, 2003). These exposures consist of sediments deposited in lake systems and showing periodic depth changes under the control of variations in the Earth s orbit (Milankovitch cycles) (Olsen, 1986). Although first described as rather unfossiliferous (Meyertons, 1963), the Solite sediments are now considered to represent some of the richest Triassic terrestrial sequences in the * Corresponding author. world. Plants and vertebrates are well represented, but the diversity of insects is particularly important (Fraser and Grimaldi, 2003). The richest strata are microlaminated units showing no evidence of bioturbation. On the basis of geochemical analysis, these microlaminated units are thought to represent very shallow, marshlike marginal lake environments. One particular cycle, designated as SO/CB 2, has yielded the vast majority of the insects. Both specimens of the new gliding form originated in this cycle but in the horizon that is considered to represent the deepest part of the lake sequence. This particular level has yielded a number of fish including remains of the large palaeonisciform Turseodus and a coelacanth. No other tetrapods have been found in this horizon; the ubiquitous amphibious tetrapod Tanytrachelos occurs in sequences below and above this level and appears to be associated more with the lake margins (Fraser et al., 1996). The new specimens are embedded in a hard dolomitized dark gray silty mudstone, and only faint impressions of the bones can be seen at the surface. Repeated attempts to remove the matrix using both mechanical and chemical techniques have been unsuccessful. The description of the new form is therefore based entirely on CT scans of both specimens. Institutional Abbreviation VMNH, Virginia Museum of Natural History. SYSTEMATIC PALEONTOLOGY DIAPSIDA Osborn, 1903?ARCHOSAUROMORPHA von Huene, 1946 MECISTOTRACHELOS APEOROS, gen. et sp. nov. (Fig. 1) Holotype VMNH 3649, the articulated skull, neck pectoral girdles, forelimbs and trunk complete as far as the pelvic girdle (Fig. 1A, B). The hindlimbs, tail, and most of the pelvic girdle were not preserved. Referred Specimen VMNH 3650, a complete skeleton missing only the distal tail and part of the left hindlimb (Fig. 1C, D). Etymology The generic and specific names are derived from the Greek mecistos and trachy, meaning longest neck; and apeoros, meaning soaring. Locality and Horizon Solite Quarry, Pittsylvania County, Virginia, U.S.A. Cow Branch Formation, Carnian, Danville Basin, Virginia and North Carolina. Diagnosis A small diapsid reptile with exceptionally elongate thoracic ribs that are approximately half the total length of 261

262 JOURNAL OF VERTEBRATE PALEONTOLOGY, VOL. 27, NO. 2, 2007 FIGURE 1. Composite CT scans and drawings of Mecistotrachelos apeoros, gen. et sp. nov. A, Composite CT scan of the holotype VMNH 3649 based on 90 slices. B, Specimen drawing of the holotype taken from the slices. All the scans were collected on an XTEK subsystem with energy settings of 150 kv and 0.150 ma. X and Y spacing of 0.055 mm and Z spacing of 0.06486 mm with 2400 views and 2 samples averaged per view. C, Composite scan of the referred specimen VMNH 3650 based on 37 slices. D, Specimen drawing of VMNH 3650 taken from the slices. The energy settings were 160 kv, 0.150 ma. X and Y spacing of 0.109 mm and Z spacing of 0.1254 mm. The CT images were digitally inverted to facilitate differentiation between bone and matrix. Abbreviations: c.r.?, possible cervical rib; d.r. 1, first dorsal rib; em, emargination of the jugal; hu, humerus; il, ilium; man, manus; pec, pectoral girdle; pu, pubis; tar, tarsus; ul, ulna.

FRASER ET AL. UPPER TRIASSIC GLIDING TETRAPOD 263 the entire skeleton; eight or nine cervical vertebrae that, with the exception of the atlas and axis, are at least twice as long as they are tall; dorsal vertebrae approximately equal in length to the cervicals; short metatarsals, length less than 1/5 th the length of the tibia; foot adapted for grasping. Description The skull is preserved in both specimens and while details of individual elements are almost impossible to see, a few features are worth noting. Firstly, it is rather narrow, lightly built and bears a pointed rostrum. On the right side of the holotype, the slightly displaced jugal exhibits an emarginated posterior margin (Fig. 1A), and there is also evidence of additional fenestrations that appear to be situated in the temporal region of the skull roof (CT slice 45 of the holotype). Together these features are strongly suggestive of a diapsid condition. Numerous small teeth are preserved on the marginal tooth-bearing bones. The skull of the holotype is larger than in VMNH 3650 yet the forelimbs are shorter (Table 1). These proportional differences may be indicative of sexual dimorphism. The holotype, VMNH 3649, would appear to have possessed either nine or possibly eight cervicals, although only eight are obviously preserved in the second specimen. This count is also based on the assumption that the atlas is very much reduced and not readily visible. The first identifiable vertebra, presumably the axis, is shorter than the remaining cervicals which are distinctly elongated, over twice as long (5.1 mm) as they are high (2.3 mm). For the most part neither specimen preserves obvious cervical ribs. This would be inconsistent with an archosauromorph identification. However, in VMNH 3650, the fifth vertebra has a short spur of bone that could be the remains of a short rib shaft. It is therefore possible that there are small and delicate ribs running along the bone that do not splay out prominently. At the same time, it is worth noting that the single specimen of Icarosaurus did not have cervical ribs preserved (Colbert, 1970), although facets for the ribs are still present. While the neck in VMNH 3650 as preserved is very straight, the holotype has a very marked curvature that is presumably indicative of the range of movement in life. Based on the holotype there would appear to be either 13 or 14 dorsal vertebrae, making a total of between 21 and 23 presacrals. This is consistent with many diapsids (although on the low side). The difficulty is determining where the sacrum begins in the holotype. VMNH 3650 provides no additional insight into the presacral count. While 11 dorsal vertebrae are preserved, there is a section missing in the posterior part of the column and as many as an additional 4 vertebrae may have been lost. In both specimens the first 3 dorsal vertebrae are relatively short with TABLE 1. Measurements (in mm) of various skeletal elements in Mecistotrachelos (VMNH 3649 and 3650) and Icarosaurus. Specimen VMNH 3649 VMNH 3650 Icarosaurus Skull length 23.6 19.2 24.8 Length cervical vertebra 6 6.4 5.15 1.2 Width/depth of cervical 6 2.6 1.92 Length presacral 17 6.85 Width/depth presacral 17 1.9 Length 1st thoracolumbar rib 55.3 45.6 Length 2nd thoracolumbar rib >72.63 11.6 Length 3rd thoracolumbar rib >69.63 108.0 Length 4th thoracolumbar rib 59.3 120.0 Length 5th thoracolumbar rib 49.7 126.0 Length 6th thoracolumbar rib 41.9 126.0 Length 7th thoracolumbar rib 35.0 123.0 Length 8th thoracolumbar rib 31.7 115.0 Length humerus 15.55 16.7 20.1 Length ulna 10.2 12.35 15.7 Length femur 19.9 34.7 Length tibia 15.6 23.0 prominent and quite robust transverse processes. The following 6 vertebrae are more elongate and are approximately equal in length to the main cervical series (Table 1). All but the last dorsal vertebra has a prominent transverse process that is comparable in proportions to that of the living Draco, but certainly not as elongate as in the kuehneosaurs. Based on the holotype, the first dorsal vertebra bore a rib of standard length, but the next 8 have exceptionally elongate thoracic ribs. The rib on dorsal vertebra 2 is complete and at 56 mm long is estimated to have been approximately equal to one third the total body length. The next 2 ribs are not complete in either specimen, but in VMNH 3650 they are approximately 70 mm long. In both specimens, the anterior 2 thoracic ribs have particularly robust proximal heads. This presumably allowed for the attachment of the musculature associated with rib movement. In VMNH 3650 the more posterior ribs are completely preserved and are approximately 35 45 mm long. The thoracic ribs exhibit a shallow but definite posterior curvature in the proximal part of the shaft, but the distal two thirds of the shaft is almost straight. This contrasts sharply with the condition in Icarosaurus, where the distal portion of the rib shaft is curved, but the proximal part is straight. It is likely that this curvature in the proximal portion of the rib precluded the membrane from being stretched out completely perpendicular to the long axis of the vertebral column. Details of the pectoral girdle cannot be discerned. Parts of the pelvic girdle can be seen in the scans of both specimens (Fig. 1A, C). No clear details are visible although an obturator foramen may be present in the pubis as seen in the CT scan of the holotype. Both fore and hind limbs are relatively long and slender, with the forelimb about 88 percent the length of the hindlimb. The very slender humerus shows minimal development of the proximal and distal heads. VMNH 3650 preserves one hindlimb with the pes still in articulation. Details of the manus and pes are difficult to discern and individual metacarpals, metatarsals and phalanges are indistinguishable. Nevertheless, a few general points are notable. The manus is best seen in the holotype, and although none of the carpals are visible parts of all 5 digits are preserved. Although there are discrete proximal tarsal bones, details are insufficient to comment on whether the new form is allied with the archosauromorphs or lepidosauromorphs. The fifth metatarsal was apparently short and subrectangular in shape. The pes, as preserved in the second specimen, had rather short metatarsals (only marginally longer than the proximal phalanges) reaching a maximum of one fifth the length of the tibia, while the digits are not spread out in a typical fashion but instead adopt a hooked posture, which suggests strong grasping capabilities. This ability, as well as the orientation of the metatarsals at right angles to the tibia, is highly suggestive of an arboreal habit. The tail is completely missing in the holotype, and only the first 7 caudal vertebrae are preserved in VMNH 3560. Taxonomic Position DISCUSSION Mecistotrachelos is a diapsid with elongate cervical vertebrae. The greatly elongated thoracic ribs, which presumably supported a gliding membrane, are very reminiscent of the condition in kuehneosaurs. However, the kuehneosaurs (Icarosaurus, Kuehneosaurus, and Kuehneosuchus) have much shorter (and fewer) cervical vertebrae than Mecistotrachelos, and the skulls are also shorter and blunter (Fig. 2A). While the systematic position of kuehneosaurs has been the subject of some discussion, they are widely regarded as lepidosauromorphs. The elongate cervical series and narrow pointed skull of Me-

264 JOURNAL OF VERTEBRATE PALEONTOLOGY, VOL. 27, NO. 2, 2007 FIGURE 2. A, Restoration of the skeleton of Icarosaurus (after Colbert, 1970). B, The sole specimen of Sharovipteryx (after Unwin et al., 2000). cistotrachelos are features shared by the enigmatic Sharovipteryx (Fig. 2B). On the basis of elongate cervical vertebrae with low neural spines, Unwin and colleagues (2000) considered Sharovipteryx to be a member of the Prolacertiformes. They also cited a possible incomplete lower temporal arcade, long and slender cervical ribs, straight femur, and the tibia longer than the femur as additional characters supporting prolacertiform affinities. However, it should be noted that the composition and diagnosis of Prolacertiformes (Protorosauria) is currently unclear (Rieppel et al., 2003). Mecistotrachelos shares the elongate cervical vertebrae, straight and slender femur and the narrow pointed skull with Sharovipteryx. Details of the cranial elements are difficult to decipher in both taxa, but in Mecistotrachelos the posterior process of the jugal does not appear to have made contact with the quadratojugal, and it is likely that it too had an incomplete lower temporal arcade. On the other hand, while the cervical ribs are indistinct in Mecistotrachelos there is no evidence to suggest that they had long and slender shafts. Moreover, the tibia is shorter than the femur, and the support for the gliding membrane is clearly very different to that of Sharovipteryx. While it would seem that Mecistotrachelos exhibits closer affinities to Sharovipteryx than kuehneosaurs, there are still very distinct differences, and we consider it to belong to a separate clade of archosauromorphs. Paleobiology Such an elongate neck is unusual in a gliding form since there is a much greater potential for flight instability due to head movements. Some modern birds such as herons overcome this problem by holding the neck in an S-shape during flight. Given the rather long cervical vertebrae in Mecistotrachelos (a feature also shared by Sharovipteryx), their relatively low number and apparently rather rigid intervertebral articulations, this was not an option. A very different wing shape was described for Icarosaurus in which the central elongate ribs had a marked ventral flexure that in turn would have produced a concave lower surface of the wing. Even in Coelurosauravus, where the membrane was supported by neomorphic rod-like structures with no participation of the thoracolumbar ribs, the wing supports exhibit a distal flexure that would have produced a similar camber to the wing profile (Frey et al., 1997). The straight distal portions of the thoracolumbar ribs in Mecistotrachelos preclude any fixed cambering of the wing. However, if differential vertical movements of the anterior and posterior ribs were possible, then Mecistotrachelos would have been capable of a variable camber wing. Moving the anterior rib down would increase the wing camber, increasing lift and drag. Moving the anterior rib up would flatten the wing, decreasing camber and decreasing lift and drag. This would make the first ribs functionally similar to the pteroid bone in pterosaurs, or even the alula in birds. In contrast, the wing in Icarosaurus would function more like a parachute. The robust rib heads of Mecistotrachelos are consistent with this theory. While an aerial habit is almost certain, both specimens of Mecistotrachelos were recovered from sediments deposited in the deepest part of the lake, yet there is not a single adaptation for aquatic habit. Therefore it seems likely that both specimens were blown off course and out over the lake. By comparison with Icarosaurus, the forelimbs in Mecistotrachelos are much longer relative to the hindlimbs (ratio of 0.62 in Icarosaurus and 0.82 in Mecistotrachelos). The gracile humerus also contrasts with the better developed proximal and distal humeral heads of Icarosaurus. This is probably linked with different foraging behaviors where perhaps the more powerful hindlimbs of Icarosaurus were the principal propulsive force to climb up the trunks of trees. We suggest that Mecistotrachelos

FRASER ET AL. UPPER TRIASSIC GLIDING TETRAPOD 265 foraged for insects among the canopy and used its feet to grasp the narrower branches. The short metatarsals and phalanges and the preserved hooked posture of the foot supports its arboreal habit. The numerous small teeth are indicative of an insectivore, and a number of terrestrial insects have been described from the same locality as Mecistotrachelos (Fraser et al., 1996). The discovery of Mecistotrachelos shows that a gliding habit evolved in at least three very different Triassic tetrapod clades. The long neck coupled with the high ratio of forelimb to hindlimb length is unique among Triassic gliding reptiles. ACKNOWLEDGMENTS We especially thank Alan Walker and Abraham Grader for their advice and assistance with the CT scanning of the specimens. Pete Kroehler and Bill Amaral provided expertise in attempts to prepare the specimens using traditional means. We gratefully acknowledge David Unwin and Susan Evans for providing constructive reviews of the manuscript. The original fieldwork was supported by a grant from the National Geographic Society and the research has also been supported by EAR 0106309 from the US National Science Foundation. LITERATURE CITED Carroll, R. L. 1978. Permo-Triassic lizards from the Karoo System. Part II. A gliding reptile from the Upper Permian of Madagascar. Palaeontologia Africana 21:143 159. Colbert, E. H. 1970. The gliding Triassic reptile Icarosaurus. Bulletin of the American Museum of Natural History 143:85 142. Evans, S. E. 1982. The gliding reptiles of the Permian. Zoological Journal of the Linnean Society 76:97 123. Evans, S. E., and H. Haubold. 1987. A review of The Upper Permian genera Coelurosauravus, Weigeltisaurus and Gracilisaurus (Reptilia: Diapsida). Zoological Journal of the Linnean Society 90:275 303. Frey, E., H.-D. Sues, and W. Munk. 1997. Gliding mechanism in the Late Permian reptile Coelurosauravus. Science 275:1450 1452. Fraser, N. C., and D. A. Grimaldi. 2003. Late Triassic continental faunal change: New perspectives on Triassic insect diversity as revealed by a locality in the Danville Basin, Virginia, Newark Supergroup; pp. 192 205 in P. M. Letourneau and P. E. Olsen (eds.), The great rift valleys of Pangaea in eastern North America: sedimentology, stratigraphy and paleontology, Volume 2. Columbia University Press, New York. Fraser, N. C., D. A. Grimaldi, P. E. Olsen, and B. Axsmith. 1996. A Triassic lagerstätte from eastern North America. Nature 380: 615 619. Gans, C., I. Darevskii, and L. P. Tatarinov. 1987. Sharovipteryx, a reptilian glider? Paleobiology 13:415 426. Huene, F. von. 1946. Die Grossen Stämme der Tetrapoden in den geologischen. Biologische Zentralblatt 65:268 275. Meyertons, C. T. 1963. Triassic formations of the Danville Basin. Virginia Division of Mineral Resources, Report of Investigations 6: 1 65. Olsen, P. E. 1979. A new aquatic eosuchian from the Newark Supergroup (Late Triassic-Early Jurassic) of North Carolina and Virginia. Postilla 176:1 14. Olsen, P. E. 1986. A 40-million year lake record of early Mesozoic orbital climatic forcing. Science 234:842 848. Osborn, H. F. 1903. On the primary divison of the Reptilia into two sub-classes, Synapsida and Diapsida. Science 17:275 276. Rieppel, O., N. C. Fraser, and S. Nosotti. 2003. The monophyly of Protorosauria (Reptilia, Archosauromorpha): a preliminary analysis. Atti della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano 144:359 382. Robinson, P. L. 1962. Gliding lizards from the Upper Keuper of Great Britain. Proceedings of the Geological Society of London 1601: 137 146. Unwin, D. M., V. R. Alifanov, and M. J. Benton. 2000. Enigmatic small reptiles from the Middle Late Triassic of Kirgizstan; pp. 177 186 in M. J. Benton, M. A. Shishkin, D. M. Unwin, and E. N. Kurochkin (eds.), The Age of Dinosaurs in Russia and Mongolia. Cambridge University Press, Cambridge. Submitted November 15, 2006; accepted January 4, 2007.