MARIAN TUDOR 2,CIPRIAN SAMOILĂ 2, AND DAN COGĂLNICEANU 2

Similar documents
CHELONIAN CONSERVATION AND BIOLOGY International Journal of Turtle and Tortoise Research

APPLICATION OF BODY CONDITION INDICES FOR LEOPARD TORTOISES (GEOCHELONE PARDALIS)

Differences in Fluctuating Asymmetry Among Four Populations of Gopher Tortoises (Gopherus polyphemus)

The effect of weaning weight on subsequent lamb growth rates

EVALUATION OF EFFECTS OF A STRAIN, STOCKING DENSITY AND AGE ON BILATERAL SYMMETRY OF BROILER CHICKENS

The Ecology of Freshwater Turtle Communities on the Upper-Coastal Plain of South Carolina

Short-term Water Potential Fluctuations and Eggs of the Red-eared Slider Turtle (Trachemys scripta elegans)

Gulf and Caribbean Research

ASPECTS OF THE POPULATI ON ECOLOGY OF MA UREMYS CASPICA IN NORTH WEST AFRICA

Diane C. Tulipani, Ph.D. CBNERRS Discovery Lab July 15, 2014 TURTLES

doi: /

Developmental Instability in Japanese Quail Genetically Selected for Contrasting Adrenocortical Responsiveness 1

A Three Year Survey of Aquatic Turtles in a Riverside Pond

Population Structure Analysis of Western Painted Turtles

A Survey of Aquatic Turtles at Kickapoo State Park and Middle Fork State Fish and Wildlife Area (MFSFWA)

RWO 166. Final Report to. Florida Cooperative Fish and Wildlife Research Unit University of Florida Research Work Order 166.

Werner Wieland and Yoshinori Takeda. Department of Biological Sciences University of Mary Washington Fredericksburg, VA

INDIVIDUAL IDENTIFICATION OF GREEN TURTLE (CHELONIA MYDAS) HATCHLINGS

2017 Great Bay Terrapin Project Report - Permit # SC

STAT170 Exam Preparation Workshop Semester

Prof. Neil. J.L. Heideman

WATER plays an important role in all stages

Thermoregulation in Homopus signatus

Tests. tend. name. get descriptive stats

Variation of Chicken Embryo Development by Temperature Influence. Anna Morgan Miller. Rockdale Magnet School for Science and Technology

Larval thermal windows in native and hybrid Pseudoboletia progeny (Echinoidea) as potential drivers of the hybridization zone

Comparative Evaluation of Online and Paper & Pencil Forms for the Iowa Assessments ITP Research Series

SCIENTIFIC REPORT. Analysis of the baseline survey on the prevalence of Salmonella in turkey flocks, in the EU,

James Lowry*, Cheryl Nushardt Susan Reigler and Omar Attum** Dept. of Biology, Indiana University Southeast, 4201 Grant Line Rd, New Albany, IN 47150

Similarities and differences in adult tortoises: a morphological approach and its implication for reproduction and mobility between species

RATE OF SCUTE ANNULI DEPOSITION OF EASTERN BOX TURTLES (TERRAPENE CAROLINA CAROLINA) HELD IN CAPTIVITY AND IN THEIR NATURAL HABITAT

in the Common Musk Turtle, Sternotherus odoratus

Near-natural Incubation of Testudo graeca soussensis PIEH, 2000, Eggs

Reptiles. Ectothermic vertebrates Very successful Have scales and toenails Amniotes (lay eggs with yolk on land) Made up of 4 orders:

Supporting Online Material for

The Seal and the Turtle

Title of Project: Distribution of the Collared Lizard, Crotophytus collaris, in the Arkansas River Valley and Ouachita Mountains

5 State of the Turtles

University of Canberra. This thesis is available in print format from the University of Canberra Library.

B-Division Herpetology Test. By: Brooke Diamond

These small issues are easily addressed by small changes in wording, and should in no way delay publication of this first- rate paper.

Analysis of Sampling Technique Used to Investigate Matching of Dorsal Coloration of Pacific Tree Frogs Hyla regilla with Substrate Color

Dominance/Suppression Competitive Relationships in Loblolly Pine (Pinus taeda L.) Plantations

Response to SERO sea turtle density analysis from 2007 aerial surveys of the eastern Gulf of Mexico: June 9, 2009

Ecological Correlates and Evolutionary Divergence in the Skull of Turtles: A Geometric Morphometric Assessment

GEODIS 2.0 DOCUMENTATION

Evolution in Action: Graphing and Statistics

Reproductive success and symmetry in zebra finches

TURTLES DEMONSTRATE THE IDEAL FREE DISTRIBUTION BY DISTRIBUTING TO MAXIMIZE FOOD CONSUMPTION

Habitat configuration and vegetation cover shapes locomotor abilities in tortoises: implications for conservation management

TRACHEMYS SCULPTA. A nearly complete articulated carapace and plastron of an Emjdd A NEAKLY COMPLETE SHELL OF THE EXTINCT TURTLE,

Title: Phylogenetic Methods and Vertebrate Phylogeny

Ohio Biological Survey Notes 3: 21-28, Ohio Biological Survey, Inc.

GROWTH AND MATURITY OF SPINY SOFTSHELL TURTLES (APALONE SPINIFERA) IN A SMALL URBAN STREAM

SOAR Research Proposal Summer How do sand boas capture prey they can t see?

Relationship Between Eye Color and Success in Anatomy. Sam Holladay IB Math Studies Mr. Saputo 4/3/15

Do the traits of organisms provide evidence for evolution?

Ecological Archives E A2

Mostafa A. Mahmoud /Alexandria Journal of Veterinary Sciences 2015, 45:57-62

By: Ann Berry Somers, Catherine E. Matthews, Kristin R. Bennett, Sarah Seymour, and John Rucker

Phalangeal formulae and ontogenetic variation of carpal morphology in Testudo horsfieldii and T. hermanni

The Effect of Aerial Exposure Temperature on Balanus balanoides Feeding Behavior

Lizard malaria: cost to vertebrate host's reproductive success

Fibropapilloma in Hawaiian Green Sea Turtles: The Path to Extinction

STATISTICAL REPORT. Preliminary Analysis of the Second Collaborative Study of the Hard Surface Carrier Test

Effects of Cage Stocking Density on Feeding Behaviors of Group-Housed Laying Hens

Title Temperature among Juvenile Green Se.

What are taxonomy, classification, and systematics?

Red Eared Slider Secrets. Although Most Red-Eared Sliders Can Live Up to Years, Most WILL NOT Survive Two Years!

J.K. McCoy CURRICULUM VITAE. J. Kelly McCoy. Department of Biology Angelo State University San Angelo, TX

The Red-Eared Slider (Trachemys scripta elegans) In Singapore. Abigayle Ng Pek Kaye, Ruth M. O Riordan, Neil F. Ramsay & Loke Ming Chou

Who Really Owns the Beach? The Competition Between Sea Turtles and the Coast Renee C. Cohen

Pacific Spider Mite Control in the Lower San Joaquin Valley

Progress at a Turtle s Pace: the Lake Jackson Ecopassage Project. Matthew J. Aresco, Ph.D. Lake Jackson Ecopassage Alliance

Final Report. Nesting green turtles of Torres Strait. Mark Hamann, Justin Smith, Shane Preston and Mariana Fuentes

Developmental environment has long-lasting effects on behavioural performance in two turtles with environmental sex determination

Clarifications to the genetic differentiation of German Shepherds

Comparative Life Histories of North American Tortoises

Representation, Visualization and Querying of Sea Turtle Migrations Using the MLPQ Constraint Database System

REPORT OF ACTIVITIES TURTLE ECOLOGY RESEARCH REPORT Crescent Lake National Wildlife Refuge 31 May to 4 July 2017

Population Dynamics: Predator/Prey Teacher Version

Incubation Conditions and Integrity in Pekin Ducks

Growth analysis of juvenile green sea turtles (Chelonia mydas) by gender.

ABSTRACT. Ashmore Reef

and hydration of hatchling Painted Turtles, Chrysemys picta

A Comparison of morphological differences between Gymnophthalmus spp. in Dominica, West Indies

Reproductive demography of two closely related Emydine Turtles in a spring fed system

Genotypic and phenotypic relationships between gain, feed efficiency and backfat probe in swine

The melanocortin 1 receptor (mc1r) is a gene that has been implicated in the wide

Testing the Ideal Free Distribution on Turtles in the Field

ABSTRACT. In the year 2000, a reported 460 turtles were removed from North Carolina for

Diel Activity Patterns of the Turtle Assemblage of a Northern Indiana Lake

The Friends of Nachusa Grasslands 2016 Scientific Research Project Grant Report Due June 30, 2017

Below, we present the methods used to address these objectives, our preliminary results and next steps in this multi-year project.

COMPARING BODY CONDITION ESTIMATES OF ZOO BROTHER S ISLAND TUATARA (SPHENODON GUNTHERI) TO THAT OF THE WILD, A CLINICAL CASE

Today there are approximately 250 species of turtles and tortoises.

The impact of the recognizing evolution on systematics

The influence of propagule size and maternal nest-site. selection on survival and behaviour of neonate turtles. J. J. KOLBE* and F. J.

W. E. CASTLE C. C. LITTLE. Castle, W. E., and C. C. Little On a modified Mendelian ratio among yellow mice. Science, N.S., 32:

The Role of Sex-specific Plasticity in Shaping Sexual Dimorphism in a Long-lived Vertebrate, the Snapping Turtle Chelydra serpentina

Transcription:

234 CHELONIAN CONSERVATION AND BIOLOGY, Volume 11, Number 2 2012 Chelonian Conservation and Biology, 2012, 11(2): 234 239 g 2012 Chelonian Research Foundation Fluctuating Asymmetry in the Eurasian Spur-Thighed Tortoise, Testudo graeca ibera Linneaus, 1758 (Testudines: Testudinidae) RALUCA IOANA BĂNCILĂ 1,2,RODICA PLĂIAŞU 1,2, MARIAN TUDOR 2,CIPRIAN SAMOILĂ 2, AND DAN COGĂLNICEANU 2 1 Emil Racoviţă Institute of Speleology of the Romanian Academy, 13 Sptembrie Road, No. 13, 050711 Bucharest, Romania [bancila_ralucaioana@yahoo.com]; 2 Faculty of Natural Sciences, University Ovidius, Aleea Universităţii nr. 1, corp B, Constanţa 900470 Romania ABSTRACT. We studied plastron-shaped asymmetry of the Eurasian Spur-Thighed Tortoise, Testudo graeca ibera, as related to life stage, gender, and distribution. Our analyses of 523 individuals showed that fluctuating asymmetry (FA) in plastron shape varied with gender (males exhibited higher levels of FA than did females) and across populations, whereas life stage had no significant effect. Although we could not identify the potential sources of variation responsible for the observed patterns of developmental instability, our study shows the value of FA as a method for studies of developmental instability in turtles. One of the most important tasks in evolutionary biology, population ecology, or conservation is estimating the fitness of an individual or a population. A simple measure of fitness that can be easily assessed by nondestructive methods is needed to identify populations subject to environmental stress before these populations are irreversibly affected. The developmental stability, (i.e., the ability of an individual to withstand random perturbations during its development) has been proposed as an index of individual fitness (Soulé 1967; Møller 1994) because it is considered an indicator of environmental and genetic stress. A common means of assessing developmental stability is through analysis of fluctuating asymmetry (FA) in bilateral traits (Van Valen 1962; Leary and Allendorf 1989; Palmer 1994). FA is defined as the minor random deviations from perfect bilateral symmetry as evidenced by measurable differences between the right and left sides (Van Valen 1962).

NOTES AND FIELD REPORTS 235 Table 1. Sampling localities and sample sizes. M 5 male, F 5 female, J 5 juvenile. Coordinates Sample size Country Population Long Lat F M J Total Romania Măcin (Măc) E28.30 N45.06 92 177 51 320 Romania Dumbrăveni (Dum) E27.98 N43.94 59 83 16 158 Bulgaria Cape Kaliakra (Kal) E28.46 N43.38 8 14 6 28 Turkey Efes (Efe) E27.34 N37.94 5 12 0 17 Total 164 286 73 523 Tortoises are good model species for the study of FA because they have a shell that exhibits bilateral symmetry and provides a record of all major and minor growth perturbations occurring during their long life span (Lynn and Ullrich 1950). The plastron is made up of bony plates covered by scutes and can be important taxonomically to characterize turtle species (Lovich and Ernst 1989; Lovich et al. 1991; Ernst et al. 1997). Plastron scutes Figure 1. Study area showing the four sampling sites (black squares): Măcin (Măc, Romania), Dumbrăveni (Dum, Romania), Cape Kaliakra (Kal, Bulgaria), and Efes (Efe, Turkey).

236 CHELONIAN CONSERVATION AND BIOLOGY, Volume 11, Number 2 2012 result in symmetry differences between sexes. Females could be more symmetrical than males attributable to faster and consequently more efficient shell growth or, on the contrary, more asymmetrical than males attributable to the more frequent accumulation of errors in symmetrical growth (Davis and Grosse 2008). In this study, we used FA to determine whether age (estimated from size), gender, and geographic location have an influence on plastron shape asymmetry in the Eurasian Spur-Thighed Tortoise (Testudo graeca ibera). METHODS Figure 2. Definition of landmarks on the right side of the Eurasian Spur-Thighed Tortoise plastron. grow larger by forming new tissues along the central suture line (Magwene 2001). This may result in a pressure from the opposing scutes directed toward the center, and as a tortoise ages, it may cause a deviation from the straight line normally seen in younger tortoises. Changes in plastron scute asymmetry with size (as a proxy for age) were demonstrated in the Yellow-Bellied Slider Trachemys scripta (Davis and Grosse 2008). FA has been recently studied using the landmark superimposition method (the so-called Procrustes superimposition method; Debat et al. 2000), a powerful geometric morphometric approach to the study of integrative morphological variation. FA can be accurately quantified using fixed landmarks on tortoise plastrons. Turtles show sexual dimorphism with adult females attaining larger body sizes than do males (Congdon and Gibbons 1983; Gibbons and Lovich 1990; Rowe 1997; Aresco and Dobie 2000) in many species, possibly because females have a somewhat higher growth rate than have males (Chaloupka and Limpus 1997; Chaloupka et al. 2004). This variation in growth rates may Studied Populations. The fieldwork was done during the period of 2006 2010. A total of 523 specimens of T. g. ibera (164 females, 286 males, and 73 juveniles) without any detectable abnormalities (such as injuries by predators or unusual additional scutes or plates) were used in the study. The specimens were sampled across a north south gradient from the Măcin Mountains National Park, in Northern Dobruja, Romania, the northern limit of this species range, down to Efes in Turkey (Table 1; Fig. 1). Data Collection. In the field, each live tortoise was assigned a number, which was temporarily written with a marker on the plastron, measured for the straight carapace length along the midline (MCL) and weighed on a portable electronic balance (KERN, model ABJ 220-4M). Sex was assigned with certainty for individuals with MCL. 180 mm in Măcin population, MCL. 154 mm in Dumbrăveni population, and MCL. 110 mm in Cape Kaliakra population. Both the carapace and the plastron were photographed. Twenty-eight landmarks (14 symmetric pairs) were digitized on each plastron picture. The landmarks were digitized (two replicates per specimen) with the TpsDig 1.18 software (Rohlf 1999; Fig. 2). Data Analysis. The least-square Procrustes superimposition algorithm was used to obtain the coordinates of optimally superimposed landmark configurations of left and right sides scaled to a centroid size of 1. The superimposed landmark configurations were then entered into Procrustes ANOVA (Klingenberg and McIntyre 1998) to analyze: 1) the overall asymmetry (FA) of plastron shape, 2) directional asymmetry (DA; Van Dongen et al. 1999), and 3) measurement error (ME). The individuals and the plastron side were entered as random and fixed effects, respectively. FA is measured by the Table 2. Results of Procrustes ANOVA with individual as a random effect. a Source SS MS 3 10,000 df F Side 0.000092 0.0383 24 1.956 (NS) Individual 0.173 0.14 12,360 7.144* Side 3 individual 0.024 0.0196 12,288 87.346*** Error 0.015 0.0002 668,808 a SS 5 sum of squares; MS 5 mean square; df 5 degrees of freedom; NS 5 not significant, * p, 0.05, and *** p, 0.001.

NOTES AND FIELD REPORTS 237 differences between the sides) was examined with multivariate regression (Jobson 1992). To analyze the subtle shape asymmetry differences between gender/life stages and populations, we used linear mixed models (LMM). Prior to analysis, the Kolmogorov-Smirnov D-test was used to check for normality and the Levene s test to ensure that the assumption of homogeneity of variance was not violated. Because there was no difference in FA between adults and juveniles (F 1,516 5 0.226, p 5 0.798), we analyzed only two groups: females and males. In LMM analysis, the Procrustes distance was entered as a dependent variable and gender as fixed factor. The population was treated as a random factor. We compared the plastron shape asymmetry among populations for each sex using one-way ANOVA. When significant differences were found, the least significant difference (LSD) was used for post-hoc multiple comparisons. All analyses were done using SPSS version 17.0 (SPSS, Inc., Chicago, 1999). RESULTS Figure 3. (Top) Influence of gender on mean plastron shape asymmetry in Eurasian Spur-Thighed Tortoise. Box plots display the interquantile range and outliers around the median. Errors bars represent 95% confidence intervals. (Bottom) Mean plastron shape asymmetry variation among populations separately on sexes (female white boxes, male gray boxes) in Eurasian Spur-Thighed Tortoise. Box plots display the interquantile range and outliers around the median. Errors bars represent 95% confidence intervals. side 3 individual interaction; DA is expressed by the main effect for sides; and ME is expressed by the residual term. The degrees of freedom are those for ordinary ANOVA multiplied by the shape dimensions, which is twice the number of the landmarks minus the four degrees of freedom that are lost during superimposition (two degrees lost during translation, one degree for each of the two dimensions, and one each for scaling and rotation). Antisymmetry (AS; Van Dongen et al. 1999) was determined by visually examining the scatter plots for each landmark of the left and right vectors after superimposition by the Procrustes algorithm. The clustering of vectors would suggest antisymmetry and is the equivalent to a binomial distribution of left/right differences. To test whether size dependency would affect the asymmetry of shape, regression of size (calculated as the centroid size of landmarks) against asymmetry (i.e., the absolute The Procrustes ANOVA of plastron shape variation showed that FA was statistically significant and higher than measurement error, whereas no significant directional asymmetry was found (Table 2). The examinations of scatter plots revealed no evidence for clustering of vectors of shape asymmetry that would have suggested antisymmetry (results not shown). The regression of unsigned shape asymmetry on mean centroid size was not significant (r 2 5 0.079, p 5 0.069). The level of asymmetry differed significantly between sexes (F 1,442 5 29.261, p, 0.001). FA was higher in males compared to females (LSD; mean differences ± SE 5 0.030 ± 0.006, p, 0.001; Fig. 3, top). The results suggested significant differences in plastron shape asymmetry among populations in both sexes (females: F 3,163 5 5.881, p, 0.01; males: F 3,285 5 9.153, p, 0.001). There were significant differences in mean plastron shape asymmetry, after Bonferroni corrections, among female populations from Efes and Cape Kaliakra (0.061 ± 0.016, p, 0.001), Efes and Dumbrăveni (0.037 ± 0.015, p, 0.05), and Cape Kaliakra and Măcin (0.034 ± 0.012, p, 0.05) (Table 3; Fig. 3, bottom). The post-hoc comparisons showed significant differences in mean plastron shape asymmetry, after Bonferroni corrections, among male populations from Efes and Dumbrăveni (20.04 ± 0.009, p, 0.001) and Cape Kaliakra and Efes (0.031 ± 0.023, p, 0.05) (Table 3; Fig. 3, bottom). DISCUSSION This study showed that FA in the plastron shape of the Eurasian Spur-Thighed Tortoise, T. g. ibera varied with gender and across populations, whereas carapace length had no significant effect on asymmetry. We found no significant differences in the levels of plastron shape

238 CHELONIAN CONSERVATION AND BIOLOGY, Volume 11, Number 2 2012 Table 3. The results of post-hoc comparisons showing the differences in the mean plastron shape asymmetry between the four studied populations of the Eurasian Spur-Thighed Tortoise, Testudo graeca ibera, separated on sexes: females (upper part of the matrix) and males (lower part of the matrix); in parentheses the significance level (p). Măc Dum Kal Efe Măc 0 0.010 ± 0.007 (0.139) 0.034 ± 0.012 (0.036) 0.027 ± 0.015 (0.390) Dum 0.002 ± 0.004 (0.356) 0 0.024 ± 0.013 (0.318) 0.037 ± 0.015 (0.034) Kal 0.008 ± 0.003 (0.238) 0.010 ± 0.016 (0.463) 0 0.061 ± 0.016 (0.006) Efe 0.023 ± 0.005 (0.341) 0.041 ± 0.009 (0.001) 0.031 ± 0.023 (0.042) 0 asymmetry between adults and juveniles tortoises. A previous study (Davis and Grosse 2008) reported that plastron scutes were more asymmetrical in adults than in juveniles, assuming that adults of long-lived animals have more opportunities for erroneous growth because of longer exposure or accumulation of the stress effects. A possible explanation of our results may be that asymmetry in Eurasian Spur-Thighed Tortoise is the product of a stress during a critical stage of tortoise development and not one of cumulated effects from previous stresses over the entire growth history. Furthermore, the functionally integrated traits accumulate fewer developmental errors than do nonintegrated (linear measurements) traits (Badyaev et al. 2005). The integration of developmental noise of a functional group of traits will increase as they develop. This may be explained by the compensatory and constraining interactions among a great number of linked components (Swaddle and Witter 1997; Badyaev 1998; Hallgrımsson 1999; Aparicio and Bonal 2002; Hallgrımsson et al. 2004; Foresman and Badyaev 2005), which can accommodate the effects of stress. Female tortoises have a faster growth rate than do males (Znari et al. 2005). This may be the main reason for the sexual differences in the FA. The faster growth in females could be argued as an indication of more efficient (i.e., more symmetrical) growth, with fewer bilateral errors. However, Lagarde et al. (2001) found a slight decrease in growth rate prior to maturation especially for females suggesting a reverse pattern of growth rate. In conclusion, we found that levels of asymmetry varied significantly among populations in both males and females. It is difficult to discriminate between the natural levels of FA and those determined by stress. However, we suggest three possible reasons for the asymmetry differences observed among populations. The variation may be attributable to differences in environmental conditions, genetic variation (Møller and Swaddle 1997), or differences in sample size among populations (Palmer 1994). Although our study could not differentiate among the potential sources of variation responsible for the observed patterns of developmental instability, these efforts support the value of FA as a useful method for further studies of developmental instability in tortoises. ACKNOWLEDGMENTS This work was made possible through permits from Măcin Mountains National Park Administration and derogation 1173/03.08.2010 from the Ministry of Environment and Forests of Romania. This research was supported by a Phare CBC RO 2005/017-535.01.02.02 grant (Bulgaria), a GEF/UNDP project 4711 (Măcin), and a CNCSIS grant (the latest to TM). We thank Paul Szekely and Diana Szekely for help with capturing and photographing tortoises in Efes. LITERATURE CITED APARICIO, J.M. AND BONAL, R. 2002. Why do some traits show higher fluctuating asymmetry than others? A test of hypotheses with tail feathers of birds. Heredity 89:139 144. ARESCO, M.J. AND DOBIE, J.L. 2000. Variation in shell arching and sexual size dimorphism of river cooters Pseudemys concinna, from two river systems in Alabama. Journal of Herpetology 34:313 317. BADYAEV, A.V. 1998. Environmental stress and developmental stability in dentition of the Yellowstone grizzly bears. Behavioral Ecology 9:339 344. BADYAEV, A.V., FORESMAN, K.R., AND YOUNG, R.L. 2005. Evolution of morphological integration: developmental accommodation of stress-induced variation. American Naturalist 3:382 395. CHALOUPKA, M.Y. AND LIMPUS, C.J. 1997. Robust statistical modeling of Hawksbill Sea Tortoise growth rates (southern Great Barrier Reef). Marine Ecology Progress Series 146:1 8. CHALOUPKA, M.Y., LIMPUS, C.J., AND MILLER, J.D. 2004. Green Tortoise somatic growth dynamics in a spatially disjunct Great Barrier Reef metapopulation. Coral Reefs 23:325 335. CONGDON, J.D. AND GIBBONS, J.W. 1983. Relationships of reproductive characteristics to body size in Pseudemys scripta. Herpetologica 39:147 151. DAVIS, A.K. AND GROSSE, A.M. 2008. Measuring fluctuating asymmetry in plastron scutes of Yellow-Bellied Sliders: the importance of gender, size and body location. American Midland Naturalist 159:340 348. DEBAT, V., ALIBERT, P., DAVID, P., PARADIS, E., AND AUFFRAY, J.C. 2000. Independence between canalisation and developmental stability in the skull of the house mouse. Proceedings of the Royal Society of London 267:423 430. ERNST, C.H., LOVICH, J.E., LAEMMERZAHL, A.F., AND SEKSCIENSKI, S. 1997. A comparison of plastron scute lengths among members of the box turtle genera Cuora and Terrapene. Chelonian Conservation and Biology 2:603 607. FORESMAN, K.R. AND BADYAEV, A.V. 2005. Developmental instability and the environment: why are some species better indicators of stress than others? In: Merritt, J.F., Churchfield, S., Hutterer, R., and Sheftel B.A. (Eds.). Advantages in the Biology of Shrews. Pittsburgh, PA: Carnegie Museum of Natural History, pp. 1 17.

NOTES AND FIELD REPORTS 239 GIBBONS, J.W. AND LOVICH, J.E. 1990. Sexual dimorphism in tortoises with emphasis on the Slider Tortoise (Trachemys scripta). Herpetological Monographs 4:1 29. HALLGRÍMSSON, B. 1999. Ontogenetic patterning of skeletal fluctuating asymmetry of rhesus macaques and human: evolutionary and developmental implications. International Journal of Primatology 20:121 151. HALLGRÍMSSON, B., WILLMORE, K., DORVAL, C., AND COOPE, D.M.L. 2004. Craniofacial variability and modularity in macaques and mice. Journal of Experimental Zoology Part B 302:207 225. JOBSON, J.D. 1992. Applied Multivariate Data Analysis. Volume II. Categorical and Multivariate Methods. New York: Springer-Verlag, 731 pp. KLINGENBERG, C.P. AND MCINTYRE, G.S. 1998. Geometric morphometrics of developmental instability: analyzing patterns of fluctuating asymmetry with Procrustes methods. Evolution 54:1363 1375. LAGARDE, F., BONNET, X., HENEN B.T., CORBIN, J.N., KEN A., AND NAULLEAU, G. 2001. Sexual size dimorphism in Steppe Tortoises (Testudo horsfieldi): growth, maturity, and individual variation. Canadian Journal of Zoology 79:1433 1441. LEARY, R.F. AND ALLENDORF, F.W. 1989. Fluctuating asymmetry as an indicator of stress: implications for conservation biology. Trends in Ecology and Evolution 4:214 217. LOVICH, J.E. AND ERNST, C.H. 1989. Variation in the plastral formulae of selected turtles with comments on taxonomic utility. Copeia 1989:304 318. LOVICH, J.E., LAEMMERZAHL, A.F., ERNST, C.H., AND MCBREEN, J.F. 1991. Relationships among turtles of the genus Clemmys (Reptilia: Testudines: Emydidae) as suggested by plastron scute morphology. Zoologica Scripta 20:425 429. LYNN, W.G. AND ULLRICH, M.C. 1950. Experimental production of shell abnormalities in tortoises. Copeia 1950:253 262. MAGWENE, P.M. 2001. Comparing ontogenetic trajectories using growth process data. Systematic Biology 50:640 656. MØLLER, A.P. 1994. Sexual selection in the barn swallow (Hirundo rustica). IV. Patterns of fluctuating asymmetry and selection against asymmetry. Evolution 48:658 670. MØLLER, A.P. AND SWADDLE, J.P. 1997. Asymmetry, Developmental Stability and Evolution. Oxford: Oxford University Press, 291 pp. PALMER, A.R. 1994. Fluctuating asymmetry analysis: a primer. In: Markow, T.A. (Ed.). Developmental Instability: Its Origins and Evolutionary Implications. Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 335 364. ROHLF, F.J. 1999. TpsDig. Version 1.18. Stony Brook: Department of Ecology and Evolution, State University of New York at Stony Brook. ROWE, J.W. 1997. Growth rate, body size, sexual dimorphism and morphometric variation in four populations of Painted Tortoises (Chrysemys pictabellii) from Nebraska. American Midland Naturalist 138:174 188. SOULé, M.E. 1967. Phenetics of natural populations. II. Asymetry and evolution in a lizard. American Naturalist 101:141 160. SWADDLE, J.P. AND WITTER, M.S. 1997. On the ontology of developmental stability in a stabilized trait. Proceedings of the Royal Society of London, Series B 264: 329 334. VAN DONGEN, S., LENS, L., AND MOLENBERGHS, G. 1999. Mixture analysis of asymmetry: modelling directional asymmetry, antisymmetry and heterogeneity in fluctuating asymmetry. Ecology Letters 2:387 396. VAN VALEN, L. 1962. A study of fluctuating asymmetry. Evolution 16:125 142. ZNARI, M., GERMANO, D.J., AND MACÉ J.-C. 2005. Growth and population structure of the Moorish Tortoise (Testudo graeca graeca) in westcentral Morocco: possible effects of overcollecting for the tourist trade. Journal of Arid Environments 62:55 74. Received: 16 August 2011 Revised and Accepted: 15 February 2012 Handling Editor: Jeffrey E. Lovich