INDUCIBLE CLINDAMYCIN RESISTANCE AMONG CLINICAL ISOLATES OF METHICILLIN RESISTANT STAPHYLOCOCCUS AUREUS

Similar documents
Detection of inducible clindamycin resistance among clinical isolates of Staphylococcus aureus in a tertiary care hospital

Saxena Sonal*, Singh Trishla* and Dutta Renu* (Received for publication January 2012)

Downloaded from journal.bums.ac.ir at 20:36 IRST on Sunday January 13th 2019

Scholars Research Library

Inducible clindamycin resistance among Staphylococcus aureus isolates

Inducible clindamycin resistance among Staphylococcus aureus isolates from skin and soft tissue infections: a study from Brunei Darussalam

Methicillin and Clindamycin resistance in biofilm producing staphylococcus aureus isolated from clinical specimens

Testing for Induction of Clindamycin Resistance in Erythromycin-Resistant Isolates of Staphylococcus aureus in a Tertiary Care Hospital

Int.J.Curr.Microbiol.App.Sci (2018) 7(8):

Prevalence of inducible clindamycin resistance in Staphylococcus aureus isolated from wound infection in a Tertiary care hospital of North India

Prevalence of inducible clindamycin resistance in Staphylococcus aureus isolated from clinical samples

Detection of Inducible Clindamycin Resistance among Staphylococcal Isolates from Different Clinical Specimens in Northwestern Nigeria

Volume-7, Issue-2, April-June-2016 Coden IJABFP-CAS-USA Received: 5 th Mar 2016 Revised: 11 th April 2016 Accepted: 13 th April 2016 Research article

Clindamycin Resistance Constitutive and Inducible Patterns in Erythromycin Resistant Clinical Isolates of Staphylococcus Species

Frequency of inducible clindamycin resistance among gram-positive cocci in a tertiary hospital, Tehran, Iran

Monika Rajani 1 * and Malay Banerjee 2. Department of Microbiology, Career Institute Of Medical Sciences & Hospital, Lucknow 2

BMR Microbiology. Research Article

Research Article. Poorva P. Bhave 1 *, Meena N. Ramteerthakar 1, S. Kartikeyan 2, Nilima R. Patil 3. Received: 21 July 2016 Accepted: 17 August 2016

EDUCATIONAL COMMENTARY - Methicillin-Resistant Staphylococcus aureus: An Update

Original article DOI: Journal of International Medicine and Dentistry 2016; 3(3):

Detection of Methicillin Resistant Strains of Staphylococcus aureus Using Phenotypic and Genotypic Methods in a Tertiary Care Hospital

Prevalence of Extended Spectrum Beta- Lactamase Producers among Various Clinical Samples in a Tertiary Care Hospital: Kurnool District, India

Chemotherapy of bacterial infections. Part II. Mechanisms of Resistance. evolution of antimicrobial resistance

Staphylococcus aureus nasal carriage in diabetic patients in a tertiary care hospital

Prevalence of Metallo-Beta-Lactamase Producing Pseudomonas aeruginosa and its antibiogram in a tertiary care centre

Antimicrobial surveillance of Methicillin Resistant Staphylococci

EUCAST Expert Rules for Staphylococcus spp IF resistant to isoxazolylpenicillins

Detection of vancomycin susceptibility among clinical isolates of MRSA by using minimum inhibitory concentration method

Methicillin resistant Staphylococcus aureus : a multicentre study

Antibiotic Resistance in Pseudomonas aeruginosa Strains Isolated from Various Clinical Specimens

Int.J.Curr.Microbiol.App.Sci (2016) 5(12):

Lab Exercise: Antibiotics- Evaluation using Kirby Bauer method.

Int.J.Curr.Microbiol.App.Sci (2015) 4(9):

imedpub Journals This article is available from:

Study of Methicillin-resistant Staphylococcus aureus in indoor patients of a tertiary care hospital in North India

Antibiotic Susceptibility Pattern of Vibrio cholerae Causing Diarrohea Outbreaks in Bidar, North Karnataka, India

BACTERIOLOGICAL PROFILE OF OSTEOMYELITIS IN A TERTIARY CARE HOSPITAL AT VISAKHAPATNAM, ANDHRA PRADESH

BACTERIOLOGICALL STUDY OF MICROORGANISMS ON MOBILES AND STETHOSCOPES USED BY HEALTH CARE WORKERS IN EMERGENCY AND ICU S

Characterization and Antibiotic Susceptibility Pattern of Coagulase Negative Staphylococci with Special Reference to Methicillin Resistance

GeNei TM. Antibiotic Sensitivity. Teaching Kit Manual KT Revision No.: Bangalore Genei, 2007 Bangalore Genei, 2007

Int.J.Curr.Microbiol.App.Sci (2017) 6(3):

Int.J.Curr.Microbiol.App.Sci (2018) 7(1):

International Journal of Health Sciences and Research ISSN:

Original Article Nepal Med Coll J 2013; 15(3): B Shrestha 1 and SS Rana 2

STAPHYLOCOCCI: KEY AST CHALLENGES

In vitro effect of some Indian honeys on Staphylococcus aureus from wounds

Inducible clindamycin resistance and nasal carriage rates of Staphylococcus aureus among healthcare workers and community members.

BACTERIOLOGICAL PROFILE AND ANTIMICROBIAL SUSCEPTIBILITY PATTERN OF ISOLATES OF NEONATAL SEPTICEMIA IN A TERTIARY CARE HOSPITAL

Int.J.Curr.Microbiol.App.Sci (2017) 6(6):

There are two international organisations that set up guidelines and interpretive breakpoints for bacteriology and susceptibility

Aerobic bacterial infections in a burns unit of Sassoon General Hospital, Pune

investigates the effect of turmeric on MRSA and gram negative bacteria which (MRSA) has emerged as a serious public health problem.

Evaluation of antimicrobial activity of Salmonella species from various antibiotic

Isolation, identification and antimicrobial susceptibility pattern of uropathogens isolated at a tertiary care centre

Study of Bacteriological Profile of Corneal Ulcers in Patients Attending VIMS, Ballari, India

Antibiogram and Vancomycin Minimum Inhibitory Concentration (MIC) levels of Staphylococcus species isolated from clinical specimens

Nature and Science, 5(3), 2007, Olowe, Eniola, Olowe, Olayemi. Antimicrobial Susceptibility and Betalactamase detection of MRSA in Osogbo.

Drug resistance & virulence determinants in clinical isolates of Enterococcus species

PREVALENCE AND ANTIMICROBIAL SUSCEPTIBILITY PATTERN OF METHICILLIN RESISTANT STAPHYLOCOCCUS AUREUS: A MULTICENTRE STUDY

Assistant Professor, Taywade College, Koradi, Nagpur(M.S.), India 2. Associate Professor, CHLRM, Sardar Patel Mahavidyalaya, Chandrapur(M.

January 2014 Vol. 34 No. 1

Annual Surveillance Summary: Methicillin- Resistant Staphylococcus aureus (MRSA) Infections in the Military Health System (MHS), 2016

High Level Gentamicin Resistance and Vancomycin Resistance in Enterococcus species at a tertiary care hospital in India

RESISTANCE OF STAPHYLOCOCCUS AUREUS TO VANCOMYCIN IN ZARQA, JORDAN

Susceptibility Tests for Methicillin-Resistant (Heteroresistant) Staphylococci

Bacterial Pathogens in Urinary Tract Infection and Antibiotic Susceptibility Pattern from a Teaching Hospital, Bengaluru, India

Annual Surveillance Summary: Methicillinresistant Staphylococcus aureus (MRSA) Infections in the Military Health System (MHS), 2017

MICRONAUT MICRONAUT-S Detection of Resistance Mechanisms. Innovation with Integrity BMD MIC

Study of Nasal Carriage of Staphylococcus aureus with Special Reference to Methicillin Resistance among Nursing Staff

Methicillin-Resistant Staphylococcus aureus

The Basics: Using CLSI Antimicrobial Susceptibility Testing Standards

Quinupristin-dalfopristin Resistance in Gram-positive Bacteria: Experience from a Tertiary Care Referral Center in North India

Consequences of Antimicrobial Resistant Bacteria. Antimicrobial Resistance. Molecular Genetics of Antimicrobial Resistance. Topics to be Covered

MID 23. Antimicrobial Resistance. Consequences of Antimicrobial Resistant Bacteria. Molecular Genetics of Antimicrobial Resistance

Infection Pattern, Etiological Agents And Their Antimicrobial Resistance At A Tertiary Care Hospital In Moshi, Tanzania

Antimicrobial Resistance

Antimicrobial Resistance Acquisition of Foreign DNA

Antibiotic Sensitivity Pattern in Bacterial Endocarditis

Microbial Profile and Antibiotic Susceptibility Pattern of Surgical Site Infections in Orthopedic Patients at a Tertiary Hospital in Bilaspur

Antibiotic Susceptibility of Common Bacterial Pathogens in Canine Urinary Tract Infections

S aureus infections: outpatient treatment. Dirk Vogelaers Dept of Infectious Diseases University Hospital Gent Belgium

MRSA surveillance 2014: Poultry

Ophthalmology Research: An International Journal 2(6): , 2014, Article no. OR SCIENCEDOMAIN international

ESBL Producers An Increasing Problem: An Overview Of An Underrated Threat

VLLM0421c Medical Microbiology I, practical sessions. Protocol to topic J05

Aerobic Bacterial Profile and Antimicrobial Susceptibility Pattern of Pus Isolates in a Tertiary Care Hospital in Hadoti Region

Tel: Fax:

Bacteriological Profile and Antimicrobial Sensitivity of Wound Infections

Journal of Natural Sciences Research ISSN (Paper) ISSN (Online) Vol.3, No.5, 2013

56 Clinical and Laboratory Standards Institute. All rights reserved.

Evaluation of a computerized antimicrobial susceptibility system with bacteria isolated from animals

Detection of Inducible AmpC β-lactamase-producing Gram-Negative Bacteria in a Teaching Tertiary Care Hospital in North India

Practical approach to Antimicrobial susceptibility testing (AST) and quality control

European Committee on Antimicrobial Susceptibility Testing

Prevalence of Pseudomonas aeruginosa in Surgical Site Infection in a Tertiary Care Centre

Bacterial resistance: How to detect three types By Susan M. Shima, MS, MT(ASCP), and Lawrence W. Donahoe, M(ASCP)

Acinetobacter species-associated infections and their antibiotic susceptibility profiles in Malaysia.

Defining Resistance and Susceptibility: What S, I, and R Mean to You

The antibacterial activity of honey against methicillin-resistant Staphylococcus aureus isolated from pus samples

Detection and Quantitation of the Etiologic Agents of Ventilator Associated Pneumonia in Endotracheal Tube Aspirates From Patients in Iran

Transcription:

IJCRR Vol 05 issue 01 Section: Healthcare Category: Research Received on: 29/10/12 Revised on: 18/11/12 Accepted on: 03/12/12 INDUCIBLE CLINDAMYCIN RESISTANCE AMONG CLINICAL ISOLATES OF METHICILLIN RESISTANT STAPHYLOCOCCUS AUREUS Nilima R. Patil 1, Ulhas S. Mali 2, Sunanda A. Kulkarni 1, M. V. Ghorpade 3, Poorva P. Bhave (Sule) 4 1 Department of Microbiology, Bharati Vidyapeeth, University Dental College and Hospital, Wanlesswadi Sangli, India 2 Department of Pathology, Bharati Vidyapeeth, University Dental College and Hospital, Wanlesswadi Sangli, India 3 Department of Microbiology, KIMS, Karad, India 4 Department of Microbiology, Rajiv Gandhi Medical College and Ch. Shivaji Maharaj Hospital, Thane, Mumbai, India E-mail of Corresponding Author: patilnilima@rocketmail.com ABSTRACT The resistance to antimicrobial agents among Methicillin resistant Staphylococcus aureus (MRSA) is an increasing problem. Clindamycin is commonly used for the treatment of serious soft tissue infections produced by Staphylococcus aureus and treatment failures are reported during therapy. Routine antibiotic sensitivity test for Clindamycin susceptibility may fail to identify imlsb (inducible MLSB) strains of Staphylococcus aureus due to erm gene. Present study was carried out to find out the percentage of inducible Clindamycin resistance in MRSA in our hospital using D-test. 250 isolates of Staphylococcus aureus from various clinical samples were confirmed by standard protocol and included in this study. MRSA were detected by using Oxacillin (1ug) and Cephoxitin (30ug) disc diffusion method. Results were interpreted according to CLSI criteria. Antibiotic sensitivity to routine antimicrobial agents was carried out using Kirby Bauers disc diffusion method. D-test was performed on all Erythromycin resistant Staphylococcus aureus to detect inducible Clindamycin resistance and constitutive Clindamycin resistance. Out of 250 isolates of Staphylococcus aureus, 90(36%) were found to be MRSA. Among these, 46(51.11%) were Erythromycin resistant. 17(36.95%) isolates showed inducible Clindamycin resistance, 4(8.69%) showed constitutive Clindamycin resistance and 25(54.34%) showed MS phenotype in MRSA. Conclusion We therefore conclude that it is necessary to perform D- test for detection of inducible Clindamycin resistance among Staphylococcus aureus in routine antibiotic sensitivity test. Therapeutic failures may thus be avoided. Keywords Staphylococcus aureus, inducible MLSB, constitutive Clindamycin resistance, D-test, MRSA. INTRODUCTION Staphylococcus aureus is one of the most common human pathogens which cause wide range of infections. The emergence of resistance to antimicrobial agents among Staphylococci is an increasing problem. Emergence of methicillin resistance in Staphylococcus aureus has resulted in therapeutic alternatives to treat Staphylococcal infections. The Macrolides (Erythromycin, Clarithromycin) and lincosamides (Clindamycin, Lincomycin) serve as one such alternative. Macrolides, Lincosamides and Streptogramin B are structurally unrelated but microbiologically Page 44

having same mode of action (1). Clindamycin is commonly used for the treatment of serious Staphylococcal infection due to its excellent pharmacokinetic properties but sometimes treatment failures were reported during therapy (2, 3). However widespread use of Macrolideslincosamides-streptogramin B (MLSB) antibiotics has led to an increased resistance to these antibiotics by Staphylococcal strains (4). The well established mechanism for such resistance is target site modification mediated by erm gene which can be expressed either constitutively or inducibely. Erythromycin & Clindamycin discs are commonly used while doing antibiotic sensitivity test for Staphylococcus aureus strains. Inducible resistance to Clindamycin is difficult to detect in routine antibiotic sensitivity test as organisms are resistant to Erythromycin and sensitive to Clindamycin in vitro when not placed adjacent to each other. In such cases, in vivo therapy with Clindamycin may select constitutive erm mutants leading to clinical therapeutic failure. Another mechanism of resistance to Macrolides by MRSA is efflux of antibiotic. Staphylococcal isolates appear Erythromycin resistant and Clindamycin sensitive in both in vivo and in vitro and the strain does not typically become Clindamycin resistant during therapy (5). The present study was carried out to find out inducible Clindamycin resistance in MRSA & interpretation of susceptibility test to guide therapy. MATERIAL AND METHODS The present study was conducted from November-2010 to November -2011. A total 250 isolates of Staphylococcus aureus were isolated from various clinical specimens like pus, wound swabs, blood and various aspirations received in the department of Microbiology, B.V.D.U.M.C & H. Sangli. All the Staphylococcus species were identified by conventional microbiological methods including colony morphology, gram stain, slide coagulation test, tube coagulation test and mannitol fermentation test, and then subjected to susceptibility testing by Kirby Bauers disc diffusion method on Muller Hinton agar plate using routine antibiotic discs as per CLSI guidelines. Methicillin resistance was detected by using Oxacillin (1-ug) and Cephoxitin (30-ug) on Muller-Hington agar supplemented with 2% NaCl followed by incubation at 35 o C. (6) The isolates which were found to be Erythromycin resistant were examined for inducible Clindamycin resistance [imlsb] by using double disc approximation test (D test) as per CLSI guidelines. Erythromycin (15-ug) disc was placed at a distance of 15 mm (edge to edge) from Clindamycin (2-ug) disc on Muller- Hington agar plate. After overnight incubation at 37 o C, flattening of zone (D shaped) around Clindamycin in the area between the two discs indicated inducible Clindamycin resistance. Strains that do not form inhibition zone around Clindamycin and Erythromycin discs are accepted as constitutive to MLSB phenotype (cmlsb). (6, 7) Figure No. 1, 2, and 3 show imlsb, cmlsb and MS phenotype RESULT Specimen wise distribution of 250 samples is shown in table No.1. Out of the 250 Staphylococcus aureus isolates, 90 were found to be MRSA. Among these, 46 (51.11%) were Erythromycin resistant. D-test was performed for these isolates, 17 (36.95%) isolates showed inducible MLSB phenotype (D-test positive), 4 (8.69%) showed constitutive MLSB phenotype and 25 (54. 34%) showed D- test negative suggesting MS phenotype. (Table No. 2) Page 45

Table 1: - Specimen wise distribution of MRSA and Erythromycin resistance. ERY Clinical Staphylococcus MRSA resistance specimen aureus (n=250) (n=90) ( n=46) Pus and wound swab 197 66 32 Urine 30 13 08 Blood 22 11 06 Body fluids 01 00 00 Table 2: Phenotypic pattern of inducible Clindamycin resistance. Phenotype pattern MRSA Total % ERY-R, CL-R (Constitutive MSLB) 4 8.69% ERY-R, CL-S, D test positive (imlsb) 17 36.95% ERY-R, CL-S, D test negative MS 25 54.34% Total ERY resistant MRSA = 46 Figure 2 Figure 3 ERY-Erythromycin, CL Clindamycin, R- Resistant, S- Sensitive. Figure 1 DISCUSSION MRSA strains which cause serious infections may give serious problems in treatment. Prevalence of MRSA has been reported to vary between 9 and 54.6% in hospital based infections (8, 9, 10). Characteristically, reports from different regions have shown different patterns of resistance. Some reports show high prevalence while others show low prevalence. Prevalence of MRSA in Page 46

our study was 36%. A study from south Maharashtra had reported that more than 90% isolates are resistant to Penicillin, Ampicillin, Erythromycin and Gentamycin where as only 39.1% were resistant to Methicillin (14). Kandle et al showed 32.8% MRSA (15) and study from Nepal had shown 31.60% MRSA (16). Our results correlate with all of them. The determination of antimicrobial susceptibility of a clinical isolate is often crucial for optimal antimicrobial therapy of infected patients. Resistance to macrolide, lincosamides, and streptogramin B [MLSB] antibiotics most only results from acquisition of Erythromycin resistant methylase gene (erm gene) which encodes enzymes that methylate the 23S rrna. In our study imlsb was found in 36.95% MRSA which is less than P. Sreenivasulu Reddy et al who observed it in 46.2% cases in MRSA (11) but is more than Yilmaz et al who found it in 24.4% and Gadepalli et al who found in 30% of MRSA cases (12) (4). Constitutive resistance in our study is seen in 8.69% of MRSA isolates which is in accordance with V. Deotale-2010 study (7.3%) (17). 54.34% of our isolates of MRSA were sensitive to Clindamycin, against which it would be safe & appropriate to use Clindamycin or other Macrolides. It correlates with previous studies who have reported 57% of susceptibility towards Clindamycin among MRSA stains (13). Above studies showed that prevalence of inducible resistant isolates may differ from place to place. CONCLUSION Our observations suggest that, D-test should be mandatory for all microbiological laboratories before reporting Clindamycin susceptibility as Clindamycin is not a suitable drug for D- test positive isolates while it can definitely prove to be a drug of choice in case of D - test negative isolates. Therefore, regular surveillance of antimicrobial susceptibility pattern of MRSA, determination of phenotypic pattern of inducible Clindamycin resistance and formulation of a definite antibiotic policy may be helpful in reducing the burden of MRSA infections and failures in Clindamycin treatment in the hospital. ACKNOWLEDGEMENT Authors acknowledge the immense help received from the scholars whose articles are cited and included in references of this manuscript. The authors are also grateful to authors / editors / publishers of all those articles, journals and books from where the literature for this article has been reviewed and discussed. REFERENCES 1. Fiebelkorn KR, Crawford SA, McElmeel ML, et al. Practical disc diffusion method for detection of inducible Clindamycin resistance in Staphylococcus aureus and coagulase negative Staphylococcus. J Clin Micro-biol 2003; 41: 4740-4744. 2. George K siberry GK, Tekle T, Carroll K, Dick Failure of Clindamycin treatment of methicillin resistant Staphylococcus aureus expressing inducible Clindamycin resistance in vitro. Clin Infect Dis 2003; 37:1257 60. 3. Lewis JS 2nd, Jorgensen JH. Inducible Clindamycin resistance in Staphylococci: should clinicians and microbiologists be concerned? Clin Infect Dis 2005; 40: 280-5. 4. Gadepalli R, Dhawan B, Mohanty S, Kapil A, Das BK, Choudhary R. inducible Clindamycin resistance in clinical isolates of Staphylococcus aureus. Indian J med Res 2006; 123: 571-3. 5. Steward CD, Raney PM, Morell AK, et al. Testing for induction of Clindamycin resistance in erythromycin resistant isolates Page 47

of Staphylococcus aureus. J Clin Micro-biol 2005; 43: 1716-17121. 6. Clinical and laboratory standards institute. Performance standards for antimicrobial susceptibility testing; seventeenth informational supplement. Clinical Laboratory Standards Institute. 2007;Vol.27 (No.1) 7. Laclercq R. Mechanisms of resistance to Macrolides and lincosamides: Nature of resistance elements and their clinical implications. Clin Infect Dis. 2002; 34:482 492. 8. Manian FA, Meyer PL, Setzer J, Senkel D. Surgical site infections associated with methicillin-resistant Staphylococcus aureus: do postoperative factors play a role? Clin. Infect. Dis., 2003, 37: 863-868. 9. Karadenizli A. Hastanelerde metisilin dirençli Staphylococcus aureus (MRSA) kontrol politikaları ve MRSA. Hastane İnfeksiyonları Dergisi, 2002, 6: 12-18. 10. Orret FA, Land M. Methicillin Resistant Staphylococcus aureus Prevalence: Current susceptibility pattern in Trinidad. BMC. Infect. Dis. 2006, 5;6:83-85. 11. P. Sreenivasulu Reddy, R. Suresh, Phenotypic detection of Clindamycin resistance among the clinical isolates of Staphylococcus aureus by using lower limit of inter disk Space.J. Microbiol. Biotech. Res., 2012, 2 (2): 258-64. 12. Yilmaz G, Aydin K, Iskender S, Caylan R, Koksal I. Detection and prevalence of inducible clindamycin resistance in staphylococci. J Med Microbiol. 2007; 56:342 5. 13. Delialioglu N, Aslan G, Ozturk C, Baki V, Sen S, Emekdas G. Inducible Clindamycin resistance in staphylococci isolated from clinical samples. Jpn J Infect Dis. 2005;58:104 6. 14. Mehta et al control of methicillin resistant Staphylococcus aureus in the tertiary care center. A five year study. J. Med. Microbiolol 1998; 16:31-4 15. Kandle S.K. et al. Bacteriophage typing and antibiotic sensitivity pattern of Staphylococcus aureus from clinical specimens in and around Solapur (South- Maharastra). J Commun Dis 2003; 35:17-23. 16. Pal N, Sharma B, Sharma R, Vyas L (2010). Detection of inducible Clindamycin resistance among Staphylococcal isolates from different clinical specimens in western India. J. Postgrad. Med., 56(3):182-185. 17. Deotale V, Mendiratta DK, Raut U, Narang P. Inducible Clindamycin resistance in Staphylococcus aureus isolated from clinical samples. Indian J Med Microbiol. 2010;28( 2):124 126. Page 48