Fujita et al. Journal of Intensive Care 2013, 1:15

Similar documents
Highly variable pharmacokinetics of dexmedetomidine during intensive care: a case report

Hemodynamic effects of dexmedetomidine-- fentanyl vs. nalbuphine--propofol in plastic surgery

Susan Becker DNP, RN, CNS, CCRN, CCNS Marymount University, Arlington, VA

Propofol vs Dexmedetomidine

Therapeutics and clinical risk management (2011) Vol.7:291~299. Dexmedetomidine hydrochloride as a long-term sedative.

NIH Public Access Author Manuscript J Crit Care. Author manuscript; available in PMC 2013 July 28.

Comparison of Intensive Care Unit Sedation Using Dexmedetomidine, Propofol, and Midazolam

PDF of Trial CTRI Website URL -

Appendix: Outcomes when Using Adjunct Dexmedetomidine with Propofol Sedation in

Ashraf Darwish, Rehab Sami, Mona Raafat, Rashad Aref and Mohamed Hisham

DOI /yydb medetomidine a review of clinical applications J. Curr Opin Anaesthesiol

A comparison of dexmedetomidine and midazolam for sedation in third molar surgery*

Dexmedetomidine. Dr.G.K.Kumar,M.D.,D.A., Assistant Professor, Madras medical college,chennai. History

Evaluation of efficacy of sedative and analgesic effects of single IV dose of dexmedetomidine in post-operative patients

Dexmedetomidine and its Injectable Anesthetic-Pain Management Combinations

Relative effectiveness of Irish factories in the surveillance of slaughtered cattle for visible lesions of tuberculosis,

Use of Dexmedetomidine for Sedation of Children Hospitalized in the Intensive Care Unit

Effective dose of dexmedetomidine to induce adequate sedation in elderly patients under spinal anesthesia

Associate Professor, Department of Anaesthesiology, Government Thoothukudi Medical College, Thoothukudi, Tamil Nadu, India, 2

Comparison of dexmedetomidine and propofol in mechanically ventilated patients with sepsis: A pilot study

Comparison of several dosing schedules of intravenous dexmedetomidine in elderly patients under spinal anesthesia

Disclosures. Dexmedetomidine: The Good, The Bad and The Delirious. The Delirious. Objectives. Characteristics of Delirium. Definition of Delirium

SCIENTIFIC COOPERATIONS MEDICAL WORKSHOPS July, 2015, Istanbul - TURKEY

Comparative Study of Dexmedetomidine and Propofol for Intraoperative Sedation During Surgery Under Regional Anaesthesia

Intraoperative Sedation During Epidural Anesthesia: Dexmedetomidine Vs Midazolam

Clinical Pharmacology Section Editor: Tony Gin

DEXMEDETOMIDINE is often used during anesthesia

Stability indicating HPLC Method Validation for the Assay of Dexmedetomidine in Dexmedetomidine Hydrochloride Injection

Corresponding author: V. Dua, Department of Anaesthesia, BJ Wadia Hospital for Children, Parel, Mumbai, India.

Original Article Effects of low dose midazolam on bradycardia and sedation during dexmedetomidine infusion

Role of Dexmedetomidine as an Anesthetic Adjuvant in Laparoscopic Surgery

Pharmacokinetics of dexmedetomidine infusions for sedation of postoperative patients requiring intensive care ²

Cheung, CW; Ying, CLA; Chiu, WK; Wong, GTC; Ng, KFJ; Irwin, MG

Dexmedetomidine intravenous sedation using a patient-controlled sedation infusion pump: a case report

Original Contributions

Dıfferent Doses Of Dexmedetomidine On Controllıng Haemodynamıc Responses To Tracheal Intubatıon

Endovascular Aortic Repair under the Monitored Anesthesia Care with Dexmedetomidine without Local Anesthesia: A Retrospective Study

A Clinical Study of Dexmedetomidine under Combined Spinal Epidural Anaesthesia at a Tertiary Care Hospital

Chronic subdural hematoma (CSDH) is one of the most

Rajaclimax Kirubahar, Bose Sundari, Vijay Kanna*, Kanakasabai Murugadoss

Comparison of Clonidine and Dexmedetomidine on Cardiovascular Stability in Laparoscopic Cholecystectomy

Dexmedetomidine for Sedation in the Critical Care Setting: An Economic Assessment

RETRACTED. Dexmedetomidine infusion is associated with enhanced renal function after thoracic surgery

ASMIC 2016 DEXMEDETOMIDINE IN THE INTENSIVE CARE UNIT DR KHOO TIEN MENG

International Journal of Health Sciences and Research ISSN:

Period of study: 12 Nov 2002 to 08 Apr 2004 (first subject s first visit to last subject s last visit)

What dose of methadone should I use?

Dexmedetomidine vs. Propofol for Short-Term Sedation of Postoperative Mechanically Ventilated Patients

ISMP Canada HYDROmorphone Knowledge Assessment Survey

Study between clonidine and dexmedetomidine in attenuation of pressor response during endotracheal intubation

A COMPARATIVE STUDY OF MIDAZOLAM, PROPOFOL AND DEXMEDETOMIDINE INFUSIONS FOR SEDATION IN ME- CHANICALLY VENTILATED PATIENTS IN ICU

Biohazard: yes no Radioisotopes: yes no Chemical Carcinogen: yes no Agent: Agent: Agents: Project Title: Objective:

Metacam. The Only NSAID Approved for Cats in the US. John G. Pantalo, VMD Professional Services Veterinarian. Think easy. Think cat. Think METACAM.

Comparison of anesthesia with a morphine lidocaine ketamine infusion or a morphine lidocaine epidural on time to extubation in dogs

PAIN Effect of intra-articular dexmedetomidine on postoperative analgesia after arthroscopic knee surgery

Effects of Dexmedetomidine on Serum Interleukin-6, Hemodynamic Stability, and Postoperative Pain Relief in Elderly Patients under Spinal Anesthesia

A Comparison of Dexmedetomidine and Midazolam for Sedation in Gynecologic Surgery Under Epidural Anesthesia

Safety and efficacy of dexmedetomidine for long-term sedation in critically ill patients

Quantification of Chloramphenicol in Chicken Using Xevo TQD with RADAR Technology

A New Advancement in Anesthesia. Your clear choice for induction.

Study the Effect of Dexmedetomidine on Emergence Agitation after Nasal Surgeries

Haemodynamic and anaesthetic advantages of dexmedetomidine

Preliminary UK experience of dexmedetomidine, a novel agent for postoperative sedation in the intensive care unit

POST-OPERATIVE ANALGESIA AND FORMULARIES

Neonates and infants undergoing radiological imaging

Comparison of two doses of intranasal dexmedetomidine as premedication in children

Case Report Dexmedetomidine as a Procedural Sedative for Percutaneous Tracheotomy: Case Report and Systematic Literature Review

A comparison of the effectiveness of dexmedetomidine versus propofol target-controlled infusion for sedation during fibreoptic nasotracheal intubation

T u l a n e U n i v e r s i t y I A C U C Guidelines for Rodent & Rabbit Anesthesia, Analgesia and Tranquilization & Euthanasia Methods

Current Strategies In ICU Sedation

COMMITTEE FOR VETERINARY MEDICINAL PRODUCTS

Benefits of WSES guidelines application for the management of intra-abdominal infections

Study of Dexmedetomidine as intramuscular premedication in outpatient cataract surgery: A placebo controlled study

Effects of acepromazine or dexmedetomidine on fentanyl disposition in dogs during recovery from isoflurane anesthesia

Quality of MRI pediatric sedation: Comparison between intramuscular and intravenous dexmedetomidine

INTRAVENOUS DEXMEDETOMIDINE PROLONGS BUPIVACAINE SPINAL ANALGESIA

Clinical effectiveness of a sedation protocol minimizing benzodiazepine infusions and favoring early dexmedetomidine: A before-after study

DECISION AND SECTION 43 STATEMENT TO THE VETERINARY COUNCIL BY THE COMPLAINTS ASSESSMENT COMMITTEE: CAC Dr A. (Section 39 referral/complaint)

A randomized control study of dexmedetomidine versus fentanyl as an anesthetic adjuvant in supratentorial craniotomies

See Important Reminder at the end of this policy for important regulatory and legal information.

Suitability of Antibiotic Treatment for CAP (CAPTIME) The duration of antibiotic treatment in community acquired pneumonia (CAP)

Synopsis. Takeda Pharmaceutical Company Limited Name of the finished product UNISIA Combination Tablets LD, UNISIA Combination Tablets

Australian and New Zealand College of Veterinary Scientists. Fellowship Examination. Veterinary Anaesthesia and Critical Care Paper 1

Rapid LC-MS/MS Method for the Analysis of Fipronil and Amitraz Insecticides and Associated Metabolites in Egg and Other Poultry Products

The Effects of 2-Adrenergic Receptor Agonist Dexmedetomidine on Hemodynamic Response in Direct Laryngoscopy

THE EFFECTS OF MIDAZOLAM AND DEXMEDETOMIDINE INFUSION ON Peri-OPERATIVE ANXIETY IN REGIONAL ANESTHESIA

Dexmedetomidine for Emergence Agitation after Sevoflurane Anesthesia in Preschool Children Undergoing Day Case Surgery: Comparative Dose-Ranging Study

Dexmedetomidine and remifentanil as adjuncts to total intravenous anesthesia with propofol

Procedure # IBT IACUC Approval: December 11, 2017

LauraLee Dorst, RVT OBJECTIVE

Abstract. and Ahmed Mohamed Omar *

A SYSTEMATIC REVIEW ON THE USE OF DEXMEDETOMIDINE AS A SOLE AGENT FOR INTRAVENOUS MODERATE SEDATION

UPEI / AVC Guidelines for Categories of Invasiveness and Rest Periods for Teaching Animals

Invasive and noninvasive procedures

Original Article INTRODUCTION. Abstract

Proper assessment of the sedation status is important

A comparison of intranasal dexmedetomidine for sedation in children administered either by atomiser or by drops

Dexmedetomidine infusion as a supplement to isoflurane anaesthesia for vitreoretinal surgery

NUMBER: R&C-ARF-10.0

TITLE: Dexmedetomidine for Sedation in the ICU or PICU: A Review of Cost- Effectiveness and Guidelines

Transcription:

Fujita et al. Journal of Intensive Care 2013, 1:15 RESEARCH Open Access A comparison between dosages and plasma concentrations of dexmedetomidine in clinically ill patients: a prospective, observational, cohort study in Japan Yoshihito Fujita 1*, Koichi Inoue 2, Tasuku Sakamoto 2, Saya Yoshizawa 1, Maiko Tomita 1, Yoshie Maeda 1, Hitomi Taka 1, Ai Muramatsu 1, Youichiro Hattori 1, Hiroyuki Hirate 1, Toshimasa Toyo'oka 2 and Kazuya Sobue 1 Abstract Background: Dexmedetomidine is a highly selective central α 2 -agonist with anesthetic and analgesic properties for patients in intensive care units. There is little information about the relationship between dosage and plasma concentration during long drug infusions of dexmedetomidine in critically ill patients, especially in Asians. In addition, the administration of dexmedetomidine with a dosage of 0.2 0.7 μg/kg/h in Japan is different from that with a dosage of 0.2 1.4 μg/kg/h in European countries and the USA. There has been concern about obtaining an effective concentration with a small dosage and estimating the relationship between dosage and plasma concentration. We conducted a prospective, observational, cohort study measuring plasma dexmedetomidine concentrations. Methods: Plasma dexmedetomidine concentrations of 67 samples from 34 patients in an intensive care unit for 2 months were measured by ultra performance liquid chromatography coupled with tandem mass spectrometry using single-blind method, and the correlation coefficient between dosages and plasma concentrations was estimated. Exclusion criteria included young patients (<16 years) and samples obtained from patients in which the dosage of dexmedetomidine was changed within 3 h. Results: Among the patients, 20 (58.8%) of the 34 received dexmedetomidine at 0.20 0.83 μg/kg/h, and in 40 of the 67 samples for which dexmedetomidine had been administered, this occurred for a median duration of 18.5 h (range, 3 87 h). The range of the dexmedetomidine plasma concentration was 0.22 2.50 ng/ml. By comparison with other studies, with a dosage of 0.2 0.7 μg/kg/h, the patients in this setting could obtain an effective dexmedetomidine concentration. The plasma dexmedetomidine concentration was moderately correlated with the administered dosage (r = 0.653, P < 0.01). The approximate linear equation was y = 0.171x + 0.254. The range of Richmond Agitation-Sedation Scale was 0 to 5. Conclusions: We concluded that, with a dosage of 0.2 0.83 μg/kg/h, the patients in this setting could obtain an effective dexmedetomidine concentration of 0.22 2.50 ng/ml. In addition, the plasma dexmedetomidine concentration was moderately correlated with the administered dosage (r = 0.653, P < 0.01). Trial registration: University Hospital Medical Information Network Clinical Trials Registry (UMIN-CTR) UMIN000009115. Keywords: Dexmedetomidine, Plasma concentration, Ultra performance liquid chromatography tandem mass spectrometry * Correspondence: masui@med.nagoya-cu.ac.jp 1 Department of Anesthesiology and Medical Crisis Management, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan Full list of author information is available at the end of the article 2013 Fujita et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Fujita et al. Journal of Intensive Care 2013, 1:15 Page 2 of 5 Background Dexmedetomidine is a highly selective central α 2 -agonist with anesthetic and analgesic properties for patients in intensive care units (ICUs). In clinical settings, we administer dexmedetomidine in intensive care units at a dosage of 0.2 0.7 μg/kg/h because there is no commercially available blood concentration simulator. In Japan, a dosage of 0.2 0.7 μg/kg/h was used because medical insurance approved doses within this range. There is little information about the relationship between dosage and plasma concentration during long drug infusions of dexmedetomidine in critically ill patients [1,2]. In addition, adaptation to Asian patients using data on the dexmedetomidine dosage and concentration from Caucasian patients may be a cause of concern because of racial differences. The purpose of this study was to confirm the effective dexmedetomidine concentration with a dosage of 0.2 0.7 μg/kg/h and to estimate the correlation coefficient between dosages and plasma concentrations in Japanese patients. We conducted a prospective, observational, cohort study measuring plasma dexmedetomidine in an intensive care unit by ultra performance liquid chromatography coupled with tandem mass spectrometry. Methods This study (UMIN number 000009115) was conducted in the ICU of Nagoya City University Hospital, Japan. The study protocol was approved by our institutional ethics committee. Written informed consent was waived by the institutional ethics committee because the study was performed using residual blood (less than 1.0 ml) discarded from blood gas analysis in the patients. However, before analysis, we provided an oral description of the study and obtained agreement, which was documented in the medical record. This prospective, observational, cohort study involved the recruitment of patients sequentially admitted to the intensive care unit of NagoyaCityUniversityHospital for 2 months. All patients admitted to the ICU were eligible, with the exception of patients less than 16 years old and patients in whom dosages of dexmedetomidine were changed within 3 h. Patients with a history of intolerance to dexmedetomidine or with significant metabolic, hematological, or endocrine disease were excluded. Patients received continuous infusion of dexmedetomidine (Precedex, Hospira Japan, Osaka, Japan) at 0.2 0.7 μg/kg/h without a loading dose. The dosage was administered on the basis of clinical need and adjusted as considered necessary to maintain optimal sedation. As concomitant treatment, patients received the standard care of the unit, which included administration of fentanyl or epidural anesthesia with 0.125% levobupivacaine for pain relief and midazolam and propofol for sedation. In the ICU, arterial blood gas analysis was performed routinely at 5 7 a.m. Residual blood (less than 1.0 ml) discarded from this blood gas analysis in the patients was used for this study. Arterial blood samples (less than 1.0 ml) from all the patients in the ICU during the survey period were collected in EDTA tubes immediately. Samples were kept at 4 C and centrifuged. Plasma was frozen at 80 C after separation and stored until analysis. Measurement of the concentration of dexmedetomidine was performed using single-blind method. Arterial blood samples were numbered without information about the patients, even in terms of whether dexmedetomidine had been administered or not. In addition, these samples labeled by number were sent for measurement, and measurement was started without information about the patients. An analytical assay for the determination of dexmedetomidine was developed; the detailed description of which has been published previously [3]. Briefly, the quantification of dexmedetomidine was carried out using the original stable dexmedetomidine-d 3 for electrospray ionization-tandem mass spectrometry. Efficacious concentration levels (50 pg/ml to 5 ng/ml) could be evaluated using a very small amount of plasma (10 μl). The lower limit of quantification was 5 pg/ml in the plasma. Statistical analyses were performed with the computer program Statistical Package for the Social Sciences (SPSS 19.0, Chicago, IL, USA). Power analysis was calculated for the primary endpoint to estimate the correlation coefficient between dosages and plasma concentrations. We obtained preliminary data and estimated the correlation coefficient (r) to be approximately 0.5 0.6. A total sample size of 25 38 was required to detect a correlation coefficient of 0.5 0.6 assuming two-tailed type I error of 5% and type II error of 10%. Data are expressed as the mean ± standard deviation, median (interquartile range) for nonnormally distributed variables (Kolmogorov-Smirnov test), or number and percentage as appropriate. The correlation between dosages and plasma concentrations of dexmedetomidine was determined by linear regression. Correlation coefficient was calculated with Pearson's r or Spearman's ρ by the type of distribution. All P values are two-tailed. P values less than 0.01 were considered significant. Results and discussion Results The characteristics of the patients are summarized in Table 1. Among the patients, 20 (58.8%) of the 34 received dexmedetomidine at 0.20 0.83 μg/kg/h, and in 40 samples for which dexmedetomidine had been administered, this occurred for a median duration of 18.5 h (range, 3 87 h). The five patients who required dexmedetomidine infusion for 87 h (more than 3.5 days) had three or four samples per patient. For nine patients, multiple samples were obtained (>1). The range of dexmedetomidine plasma concentration

Fujita et al. Journal of Intensive Care 2013, 1:15 Page 3 of 5 Table 1 Characteristics of the patients Characteristic Value Number 20 Age (year) 67.5 (41.5, 75.5) Male, female 14, 6 Height (cm) 162.4 ±9.7 Weight (kg) 56.9 ±12.1 Main reason for ICU admission, number (%) Medical 7 (35 %) Surgical 13 (65 %) Values are mean ± SD or median (interquartile range) or number (%). was 0.22 2.50 ng/ml(table 2).The plasma dexmedetomidine concentration was moderately correlated with the administered dosage (r = 0.653, P <0.01; Figure 1). The approximate linear equation was y = 0.171x + 0.259. The range of Richmond Agitation-Sedation Scale was 0 to 5 (Table 2). With a small dosage of 0.2 0.7 μg/kg/h, the patients in this setting could obtain an effective dexmedetomidine concentration. We confirmed that a concentration of 0 ng/ml dexmedetomidine was measured with the samples from the patients who were administered other sedative drugs including midazolam, fentanyl, propofol, oral diazepam, and oral clonidine hydrochloride without receiving dexmedetomidine. Table 2 Details of administered dexmedetomidine and sedation Drug treatment N = 40 Duration of infusion (h) 18.5 (10, 46.25) [range 3 87] Plasma concentrations (ng/ml) 1.05 ± 0.56 [range 0.22 2.50] Dosages (μg/kg/h) 0.41 (0.30, 0.58) [range 0.20 0.83] Combined administration No drug 14 (35 %) 1 drug 18 (45 %) 2 drugs 6 (15 %) 3 or more drugs 2 (5 %) Fentanyl 23 (57.5 %) Midazolam 3 (7.5 %) Intubation 26 (65 %) RASS 1 0 (0 %) 0 16 (40 %) 1 5 (12.5 %) 2 6 (15.0 %) 3 6 (15.0 %) 4 4 (10.0 %) 5 3 (7.5 %) Values are mean ± SD or median (interquartile range) or number (%). Discussion Our study demonstrated that, at a small dosage of 0.2 0.83 μg/kg/h, the Japanese patients in this clinical setting could obtain an effective dexmedetomidine concentration of 0.22 2.50 ng/ml. We also found that the plasma dexmedetomidine concentration was moderately correlated with the administered dosage. We thought that this information might be useful in a clinical setting for Japanese patients. The effective sedative concentration of dexmedetomidine was thought to be between 0.2 and 3.2 ng/ml in previous studies. Ebert et al. described in detail the estimation of sedative effect and cold pressor test with several concentrations in ten healthy men (20 27 years old) [4]. In their study, recall and recognition decreased at a dose of more than 0.7 ng/ml. Pain response to the cold pressor test decreased at more than 3.2 ng/ml. This result suggests that a decrease of pain response might require more than 3.2 ng/ml; however, suppression of recognition might occur at 0.7 ng/ml. Despite not directly measuring dexmedetomidine concentration, Hall et al. reported sedative properties of a small dose of dexmedetomidine [5]. In their study, seven healthy volunteers received 0.2 or 0.6 μg/kg/h dexmedetomidine after a 10-min initial dose of 6 μg/kg/h. In this study, only 0.2 μg/kg/h dexmedetomidine suppressed the visual analog scale of pain. According to these papers, our dexmedetomidine range of 0.22 2.50 ng/ml might be within the effective sedative concentration. At a dosage of 0.2 0.83 μg/kg/h, the Japanese patients in this clinical setting could obtain an effective dexmedetomidine concentration of 0.22 2.50 ng/ml; this data might be informative for Asian people. Adaptation to Asian patients using the data on dexmedetomidine dosage and concentration from Caucasian patients remains a cause of concern because of racial differences. These racial differences consist of not only differences in physique between Asians and Caucasians but also disparities in pain [6,7]. Konstantatos et al. investigated the relationship between race and early opioid consumption. In this paper, they described that Chinese patients in Hong Kong required less opioid and experienced greater pain intensity and pruritus than Caucasian patients [6]. However, in our study at a range of 0.22 2.50 ng/ml, we could obtain an effective sedation level because the range of Richmond Agitation-Sedation Scale was 0 to 5. Our data demonstrated that the Japanese effective concentration range of dexmedetomidine might be almost equal to that of Caucasians. The pharmacokinetics of dexmedetomidine in healthy volunteers [4,5,8,9] might differ from that in intensive care patients [1,2]. There is little information on its pharmacokinetics after long-term (>48 h) infusion in an intensive care unit setting [2]. Our samples were obtained in an

Fujita et al. Journal of Intensive Care 2013, 1:15 Page 4 of 5 Figure 1 The correlation coefficient between dosages and plasma concentrations. The white circles and strait line indicated the result of each sample and the linear equation, respectively. The plasma dexmedetomidine concentration was moderately correlated with the administered dosage (r = 0.653, P < 0.01). The approximate linear equation was y = 0.171x + 0.259. ICU, and the median duration of our data was 18.5 h (range, 3 87 h). Our data might be useful and informative for long-term sedation, especially in Asians. In this study, we administered continuous infusion of dexmedetomidine without a loading dose because many patients had already received other analgesic and sedative drugs, and we wanted to avoid abrupt hemodynamic effects [4] with a loading dose. In terms of the pharmacodynamic effect, the plasma concentration might vary because of the difference of infusion duration prior to blood sampling, even at a constant administration rate of dexmedetomidine. This study was an observational study, so we measured the blood samples in a clinical setting. In addition, we adopted the samples after continuous administration for more than 3 h because we could confirm an effect of administration of dexmedetomidine within 2 3 h after continuous administration in a clinical setting. With a loading dose, the correlation of the plasma dexmedetomidine concentration might be stronger with the administered dosage. Our study had several other limitations. First, the number of patients was small, and the patient characteristics varied. Because this study was observational, as concomitant treatment, patients received the standard care of the unit, which included other pain relief and sedation drugs, such as the administration of fentanyl, epidural anesthesia, midazolam, and propofol. In future studies, by selecting patients undergoing a certain type of surgery, by controlling other pain relief and sedation drugs, as well as using estimatedpain,wemaybeabletoobtainmoreprecisedata concerning the strategy for administering dexmedetomidine. Second, we could not completely rule out that the measurement had been affected by the other drugs. We confirmed that a dexmedetomidine concentration of 0 ng/ml was measured in the samples from the patients who had been administered other sedative drugs including midazolam, fentanyl, propofol, oral diazepam, and oral clonidine hydrochloride without receiving dexmedetomidine. However, these findings could not guarantee that our method of measuring the dexmedetomidine concentration was unaffected by these other drugs. This might be considered a typical limitation in a clinical setting. Third, the five patients who required dexmedetomidine infusion for 87 h (more than 3.5 days) had three or four samples per patient. In total, multiple samples were obtained from nine patients (>1). Therefore, we could not rule out that these multiple samples might have induced variation in findings for all the patients. Conclusions In conclusion, we demonstrated that, at a dosage of 0.2 0.83 μg/kg/h, the Japanese patients in this clinical setting could obtain an effective dexmedetomidine concentration of 0.22 2.50 ng/ml. In addition, the plasma

Fujita et al. Journal of Intensive Care 2013, 1:15 Page 5 of 5 dexmedetomidine concentration was moderately correlated with the administered dosage (r = 0.653, P <0.01). Competing interests Support was provided solely by institutional and departmental sources. Authors' contributions YF, SY, and MT participated in the design of the study and performed statistical analysis. YF drafted the manuscript. KI, TS, and TT performed measurements of dexmedetomidine. YM, HT, AM, YH, and HH collected the arterial samples and acquired data. TT and KS conceived the study, participated in the design and coordination, and helped to draft the manuscript. All authors read and approved the final manuscript. concentrations of dexmedetomidine on myocardial perfusion and cardiac function in healthy male subjects. Anesthesiology 2006, 105:902 910. 9. Angst MS, Ramaswamy B, Davies MF, Maze M: Comparative analgesic and mental effects of increasing plasma concentrations of dexmedetomidine and alfentanil in humans. Anesthesiology 2004, 101:744 752. doi:10.1186/2052-0492-1-15 Cite this article as: Fujita et al.: A comparison between dosages and plasma concentrations of dexmedetomidine in clinically ill patients: a prospective, observational, cohort study in Japan. Journal of Intensive Care 2013 1:15. Authors' information YF is an MD and PhD and is Associate Professor at the Department of Anesthesiology and Medical Crisis Management, Nagoya City University Graduate School of Medical Sciences. KI is a PhD and an instructor at the Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka. TS is a pharmacist and staff member at the Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka. TT is a PhD and Professor at the Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka. SY, MT, YM, HT, AM, YH, and HH are MDs and staff members at the Department of Anesthesiology and Medical Crisis Management, Nagoya City University Graduate School of Medical Sciences. KS is an MD, PhD, and Professor at the Department of Anesthesiology and Medical Crisis Management, Nagoya City University Graduate School of Medical Sciences. Acknowledgements We thank Dr. Shinichiro Yoshimura, Dr. Yoshiki Sento, Dr. Kazuma Fujikake, Dr. Satoshi Aoki, Dr. Yukiko Mori, Dr. Taiki Kojima, Dr. Kentaro Miyake, and Dr. Toshihiro Yasui for the help in collecting arterial samples and acquiring data. Author details 1 Department of Anesthesiology and Medical Crisis Management, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan. 2 Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan. Received: 4 September 2013 Accepted: 29 November 2013 Published: 20 December 2013 References 1. Venn RM, Karol MD, Grounds RM: Pharmacokinetics of dexmedetomidine infusions for sedation of postoperative patients requiring intensive care. Br J Anaesth 2002, 88:669 675. 2. Iirola T, Ihmsen H, Laitio R, Kentala E, Aantaa R, Kurvinen JP, Scheinin M, Schwilden H, Schuttler J, Olkkola KT: Population pharmacokinetics of dexmedetomidine during long-term sedation in intensive care patients. Br J Anaesth 2012, 108:460 468. 3. Inoue K, Sakamoto T, Fujita Y, Yoshizawa S, Tomita M, Min JZ, Todoroki K, Sobue K, Toyo'oka T: Development of a stable isotope dilution UPLC-MS/ MS method for quantification of dexmedetomidine in a small amount of human plasma. Biomed chromatogr 2013, 27:853 858. 4. Ebert TJ, Hall JE, Barney JA, Uhrich TD, Colinco MD: The effects of increasing plasma concentrations of dexmedetomidine in humans. Anesthesiology 2000, 93:382 394. 5. Hall JE, Uhrich TD, Barney JA, Arain SR, Ebert TJ: Sedative, amnestic, and analgesic properties of small-dose dexmedetomidine infusions. Anesth Analg 2000, 90:699 705. 6. Konstantatos AH, Imberger G, Angliss M, Cheng CH, Meng AZ, Chan MT: A prospective cohort study comparing early opioid requirement between Chinese from Hong Kong and Caucasian Australians after major abdominal surgery. Br J Anaesth 2012, 109:797 803. 7. Anderson KO, Green CR, Payne R: Racial and ethnic disparities in pain: causes and consequences of unequal care. J Pain 2009, 10:1187 1204. 8. Snapir A, Posti J, Kentala E, Koskenvuo J, Sundell J, Tuunanen H, Hakala K, Scheinin H, Knuuti J, Scheinin M: Effects of low and high plasma Submit your next manuscript to BioMed Central and take full advantage of: Convenient online submission Thorough peer review No space constraints or color figure charges Immediate publication on acceptance Inclusion in PubMed, CAS, Scopus and Google Scholar Research which is freely available for redistribution Submit your manuscript at www.biomedcentral.com/submit