Research Article Multiple Antimicrobial Resistance of Escherichia coli Isolated from Chickens in Iran

Similar documents
Animal Antibiotic Use and Public Health

DANMAP Danish Integrated Antimicrobial Resistance Monitoring and Research Programme

The Report referred to in Article 9 of Directive 2003/ 99/ EC

Frank Møller Aarestrup

FACT SHEETS. On the Danish restrictions of non-therapeutical use of antibiotics for growth promotion and its consequences

The Report referred to in Article 5 of Directive 92/117/EEC

Country Report: Malaysia

Surveillance for antimicrobial resistance in enteric bacteria in Australian pigs and chickens

Antimicrobial Resistance of Escherichia coli Isolated from Chickens in West of Algeria

ZOONOSES MONITORING. Luxembourg IN 2014 TRENDS AND SOURCES OF ZOONOSES AND ZOONOTIC AGENTS IN FOODSTUFFS, ANIMALS AND FEEDINGSTUFFS

ARCH-Vet. Summary 2013

Antimicrobial use in poultry: Emerging public health problem

Antimicrobial Resistance Monitoring Program in Food-Producing Animals in Japan

Antimicrobial Resistance: Do we know everything? Dr. Sid Thakur Assistant Professor Swine Health & Production CVM, NCSU

Antibiotic resistance and the human-animal interface: Public health concerns

ESCHERICHIA COLI RESISTANCE AND GUT MICROBIOTA PROFILE IN PIGS RAISED WITH DIFFERENT ANTIMICROBIAL ADMINISTRATION IN FEED

Campylobacter infections in EU/EEA and related AMR

Twenty Years of the National Antimicrobial Resistance Monitoring System (NARMS) Where Are We And What Is Next?

UPDATE ON DEMONSTRATED RISKS IN HUMAN MEDICINE FROM RESISTANT PATHOGENS OF ANIMAL ORIGINS

Monitoring of antimicrobial resistance in Campylobacter EURL AR activities in framework of the new EU regulation Lina Cavaco

Background and Plan of Analysis

Antibiotic resistance of bacteria along the food chain: A global challenge for food safety

The Report referred to in Article 9 of Directive 2003/99/EC

Trends and sources of Campylobacter in the EU, covered by EFSA s Community zoonoses summary report

International Food Safety Authorities Network (INFOSAN) Antimicrobial Resistance from Food Animals

Preliminary investigation of antibiotic resistant and susceptible Campylobacter in retail ground beef in the United States.

Country Report Myanmar

The Report referred to in Article 5 of Directive 92/117/EEC

Proceedings of. The 15 th Chulalongkorn University Veterinary Conference CUVC 2016: Research in Practice. April 20-22, 2016 Bangkok, Thailand

Quinolone Resistance in Bacterial Isolates from Chicken Carcasses in Abeokuta, Nigeria: A Retrospective Study from

Lab Exercise: Antibiotics- Evaluation using Kirby Bauer method.

Antibiotic Resistance The Global Perspective

Antibiotic Residues in Meat and Meat Products, Implications on Human Health


Informing Public Policy on Agricultural Use of Antimicrobials in the United States: Strategies Developed by an NGO

CROATIA TRENDS AND SOURCES OF ZOONOSES AND ZOONOTIC AGENTS IN HUMANS, FOODSTUFFS, ANIMALS AND FEEDINGSTUFFS

2 nd UK-Russia Round Table on AMR. Christopher Teale, Animal and Plant Health Agency. Moscow, st February 2017.

Consequences of Antimicrobial Resistant Bacteria. Antimicrobial Resistance. Molecular Genetics of Antimicrobial Resistance. Topics to be Covered

On farm risks associated with the prevalence of resistant strains of Escherichia coli: a pilot study

MID 23. Antimicrobial Resistance. Consequences of Antimicrobial Resistant Bacteria. Molecular Genetics of Antimicrobial Resistance

The National Advisory

EFSA s activities on Antimicrobial Resistance

Y. S. Malik,* Y. Chander, S. C. Gupta, and S. M. Goyal*,1

TOC INDEX. Salmonellosis in Feedlot Cattle. Jane Pritchard. Take Home Message. Introduction

Enterobacter aerogenes

ANTIMICROBIAL RESISTANCE IN COMMENSAL E. COLI FROM LIVESTOCK IN BELGIUM: Veterinary Epidemiology

Survey of Tiamulin+Oxytetracyclinein control of CRD complex due to La Sota vaccine in broiler chickens

Human health impacts of antibiotic use in animal agriculture

Antimicrobial susceptibility of Salmonella, 2016

PILOT STUDY OF THE ANTIMICROBIAL SUSCEPTIBILITY OF SHIGELLA IN NEW ZEALAND IN 1996

Comparative studies on pulse and continuous oral norfloxacin treatment in broilers and turkeys. Géza Sárközy

Antimicrobial Resistance

Antimicrobial Resistance Acquisition of Foreign DNA

Antibiotic Susceptibility Pattern of Vibrio cholerae Causing Diarrohea Outbreaks in Bidar, North Karnataka, India

Antimicrobial susceptibility testing of Campylobacter jejuni and C. coli

Geographical and seasonal variation in antimicrobial susceptibility of Escherichia coli isolated from broiler chicken carcasses in Iran

Antimicrobial use and Antimicrobial resistance: chapter 6.7 and 6.8 of the OIE Terrestrial Animal Health

European Committee on Antimicrobial Susceptibility Testing

Antimicrobial Use and Antimicrobial Resistance in Relation to the Canadian Pork Sector Presented by Jorge Correa Pork Committee Banff May 2013

Approved by the Food Safety Commission on September 30, 2004

AMU/AMR Policy for animals in Korea Jaehong CHANG, DVM, MS

Antibiotic Resistance Pattern Of Escherichia Coli Isolated From Poultry In Bangalore

The use of antimicrobials in livestock production and antimicrobial resistance in pathogens from livestock

Detection and Quantitation of the Etiologic Agents of Ventilator Associated Pneumonia in Endotracheal Tube Aspirates From Patients in Iran

The Report referred to in Article 9 of Directive 2003/99/EC

EDUCATIONAL COMMENTARY - Methicillin-Resistant Staphylococcus aureus: An Update

Methicillin-Resistant Staphylococcus aureus

Performance Information. Vet use only

Antimicrobial Resistance

Is ABF production supporting or contradicting bird welfare? Maarten De Gussem, DVM Poultry Vaccinology - Ceva Summit March 14th 2016, Barcelona

Antibiotic Symposium National Institute of Animal Agriculture Atlanta, Georgia

The epidemiology of antimicrobial resistance and the link between human and veterinary medicine

a. 379 laboratories provided quantitative results, e.g (DD method) to 35.4% (MIC method) of all participants; see Table 2.

CHOICES The magazine of food, farm and resource issues

Recommended for Implementation at Step 7 of the VICH Process on 15 December 2004 by the VICH Steering Committee

Antibiotics & Resistance

Antimicrobial susceptibility of Salmonella, 2015

Human Diseases Caused by Foodborne Pathogens of Animal Origin

The EFSA s BIOHAZ Panel perspective on food microbiology and hygiene

Antimicrobial susceptibility testing of Campylobacter jejuni and C. coli. CRL Training course in AST Copenhagen, Denmark 23-27th Feb.

Research Article Faecal Carriage of Extended-Spectrum ß-Lactamase (ESBL)- Producing Aeromonas species

Christiane Gaudreau* and Huguette Gilbert

A retrospective analysis of urine culture results issued by the microbiology department, Teaching Hospital, Karapitiya

This document is meant purely as a documentation tool and the institutions do not assume any liability for its contents

Proceedings of the 19th American Academy of Veterinary Pharmacology and Therapeutics Biennial Symposium

The Honorable Thomas R. Frieden, MD, MPH Director, Centers for Disease Control and Prevention 1600 Clifton Rd, MS D-14 Atlanta, GA 30333

Accepted Manuscript Title: Author(s): Reference: To appear in: ISSN: Received date: Revised date: Accepted date:

CIPARS The Canadian Integrated Program for Antimicrobial Resistance Surveillance. Highlights from 2016

Antibiotic Resistance in the European Union Associated with Therapeutic use of Veterinary Medicines

64954 Federal Register / Vol. 65, No. 211 / Tuesday, October 31, 2000 / Notices

THE EVALUATION OF THE ANTIMICROBIAL RESISTANCE OF ESCHERICHIA COLI AND SALMONELLA SPP. STRAINS ISOLATED FROM RAW MEAT

Korea s experience of total ban of antibiotics in animal feed

Aabo, Søren; Ricci, Antonia; Denis, Martine; Bengtsson, Björn; Dalsgaard, Anders; Rychlik, Ivan; Jensen, Annette Nygaard

Urban Water Security Research Alliance

EPIDEMIOLOGY OF CAMPYLOBACTER IN IRELAND

Global Overview on Antibiotic Use Policies in Veterinary Medicine

Routine internal quality control as recommended by EUCAST Version 3.1, valid from

Should we test Clostridium difficile for antimicrobial resistance? by author

Information note regarding the Danish and EU restrictions of non-therapeutical use of antibiotics for growth promotion

Project Summary. Emerging Pathogens in US Cattle

Transcription:

International, Article ID 491418, 4 pages http://dx.doi.org/10.1155/2014/491418 Research Article Multiple Antimicrobial Resistance of Escherichia coli Isolated from Chickens in Iran Reza Talebiyan, 1 Mehdi Kheradmand, 2 Faham Khamesipour, 3 and Mohammad Rabiee-Faradonbeh 4 1 Department of Basis Sciences, Faculty of, Islamic Azad University, Shahrekord Branch, P.O. Box 166, Shahrekord, Iran 2 Faculty of, Islamic Azad University, Shahrekord Branch, Shahrekord, Iran 3 Young Researchers and Elite Club, Islamic Azad University, Shahrekord Branch, Shahrekord, Iran 4 Department of Microbiology, Islamic Azad University, Shahrekord Branch, Shahrekord, Iran Correspondence should be addressed to Mohammad Rabiee-Faradonbeh; mrfskums@gmail.com Received 16 October 2014; Revised 2 November 2014; Accepted 2 November 2014; Published 7 December 2014 Academic Editor: Kazim Sahin Copyright 2014 Reza Talebiyan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Antimicrobial agents are used extremely in order to reduce the great losses caused by Escherichia coli infections in poultry industry. In this study, 318 pathogenic Escherichia coli (APEC) strains isolated from commercial broiler flocks with colisepticemia were examined for antimicrobials of both veterinary and human significance by disc diffusion method. Multiple resistances to antimicrobial agents were observed in all the isolates. Resistance to the antibiotics was as follows: Tylosin (88.68%), Erythromycin (71.70%), Oxytetracycline (43.40%), Sulfadimethoxine-Trimethoprim (39.62%), Enrofloxacin (37.74%), Florfenicol (35.85%), Chlortetracycline (33.96%), Doxycycline (16.98%), Difloxacin (32.08%), Danofloxacin (28.30%), Chloramphenicol (20.75%), Ciprofloxacin (7.55%), and Gentamicin (5.66%). This study showed resistance against the antimicrobial agents that are commonly applied in poultry, although resistance against the antibiotics that are only applied in humans or less frequently used in poultry was significantly low. This study emphasizes on the occurrence of multiple drug resistant E. coli among diseased broiler chickens in Iran. The data revealed the relative risks of using antimicrobials in poultry industry. It also concluded that use of antibiotics must be limited in poultry farms in order to reduce the antibiotic resistances. 1. Introduction Poultry production is one of the most important parts of farm industry in many countries including Iran. The high consumption of chicken meat requires great care to provide the safety of the industry against menacing factors [1]. Along with development of poultry farms and intensive culture, occurrence of the bacterial diseases and, consequently, overusing antibiotics have been increased in recent years. Antimicrobials are valuable means to treat clinical disease and keep healthy and growth promotion. However, the treatment of all herds and flocks with antimicrobials for increasing the growth and preventing illness has become an endless debate [2]. Often whole flocks or herds of sick animals are treated at once, containing animals that are not sick. Moreover, antimicrobials are used in the absence of illness to prevent diseases when animals may be susceptible to infection [3]. This practice is very usual in Iran and other countries where outbreak is caused by enteric pathogens which are the sources of poultry farms diseases. Such a misuse and/or unsuitable usage affect a larger number of animals, since it usually interferes in treating the whole herd or flock again, which increases the possibility of selecting organisms resistant to the antibiotic. Furthermore, antimicrobial resistant pathogens also create a severe and costly animal health problem which may make the illness longer and reduce antimicrobial effectiveness leading to higher morbidity and mortality [4, 5]. In slaughterhouse, resistant strains from the gastrointestinal tract may infect chicken carcasses and, as a result, chicken meats are often related to multiresistant E. coli; also eggs become infected during laying [6]. Therefore, antimicrobial

2 International Table 1: Antimicrobial resistance and susceptibility of E. coli isolated from chickens (S) intermediate (I) resistant (R). Bacterial isolates (n = 318) Antimicrobial agent Diffusion zone breakpoint (mm) R I S n % n % n % Aminoglycosides Gentamicin (GM/10 μg) 12 18 (5.66) 39 (12.11) 261 (82.23) Phenicols Chloramphenicol (C/30 μg) 12 66 (20.75) 69 (21.65) 183 (57.60) Florfenicol (FFc/30 μg) 13 114 (35.85) 131 (41.31) 73 (22.84) Quinolones Ciprofloxacin (CP/5 μg) 15 24 (7.55) 45 (14.11) 249 (78.34) Enrofloxacin (NFX/5 μg) 17 120 (37.74) 71 (22.44) 130 (40.82) Danofloxacin (D/30 μg) 16 90 (28.30) 36 (11.37) 192 (60.33) Difloxacin (DIF/25 μg) 17 102 (32.08) 26 (8.33) 189 (59.59) Tetracyclines Oxytetracycline (T/30 μg) 14 138 (43.40) 123 (38.64) 57 (17.96) Doxycycline (D/30 μg) 13 54 (16.98) 135 (42.30) 129 (40.72) Chlortetracycline (CTe/30 μg) 14 108 (33.96) 92 (28.92) 118 (37.12) Macrolides Erythromycin (E/15 μg) 14 228 (71.70) 67 (21.04) 23 (7.26) Tylosin (TYC/30 μg) 14 282 (88.68) 36 (11.32) 0 (0.0) Sulfadimethoxine-Trimethoprim (SXT/25 μg) 10 126 (39.62) 75 (23.48) 117 (36.90) resistant fecal E. coli from poultrycan infect humans directly and indirectly with food. Though seldom, these resistant bacteria may colonize in the human gastrointestinal tract and may also transfer resistance bacteria to human endogenous flora [7]. However, the mechanism of spreading the antimicrobial resistance transfer from animals food to humans remnants is contentious. Colonization of the gastrointestinal tract with resistant E. coli from broilers has been indicated in human volunteers [8]. There is historic evidence that animals are a source for E. coli found in humans. Resistance genes may be transferred vertically among bacteria of different genera and families or horizontally transferred between different bacterial species contained by the same genus or family and the possibility for transport of antimicrobial resistance genes among animals, humans, and the environment is a direct menace to public health [4]. The practice of using antimicrobials in feed may change the intestinal flora by posing a selective pressure in favor of resistant bacteria populations (such as resistant E. coli) that could find their path into the environment and food chain [9]. Data on the outbreak of antimicrobial resistant veterinary pathogens are required for knowledge based risk assessments concentrating on the relative risks concerning use of antimicrobial agents in animal treatment [10, 11]. This research aimed at investigating the antimicrobial resistance of E. coli living in broiler chickens breaded in Shahrekord Province, Iran. 2. Materials and Methods 2.1. Bacterial Isolates. Isolation and identification of E. coli were done by standard bacteriological methods. MacConkey and EMB agar were used for culturing of specimen and the colonies suspected of E. coli were identified by standard methods [12]. All strains of E. coli were isolated from 318 commercial broiler flocks, from April 2009 to March 2012 in Shahrekord Province, Iran. All of the samples were obtained from heart and liver of 7- to 14-day-old broiler chickens which suffered from septicemia in the past 24 hours. 2.2. Antimicrobial Susceptibility Determination. Antimicrobial susceptibility determination of isolated E. coli was completed by the standard disc diffusion procedure by taking into consideration the Clinical and Laboratory Standards Institute (CLSI) Performance Standards for Antimicrobial Disk Susceptibility Tests [13]. The E. coli strains were tested against the antibiotics of veterinary significance. The following antibiotic discs on Mueller Hinton agar were applied: Chloramphenicol (C/30 μg), Chlortetracycline (CTe/30 μg), Ciprofloxacin (CP/5 μg), Danofloxacin (D/30 μg), Difloxacin (DIF/25 μg), Doxycycline (D/30 μg), Enrofloxacin (NFX/5 μg), Erythromycin (E/15 μg), Florfenicol (FFc/30 μg), Gentamicin (GM/10 μg), Oxytetracycline (T/ 30 μg), Sulfadimethoxine-Trimethoprim (SXT/25 μg), and Tylosin (TYC/30 μg). 3. Results The highest rate of resistance was against Tylosin (88.68%), Erythromycin (71.70%), Oxytetracycline (43.40%), Sulfadimethoxine-Trimethoprim (39.62%), Enrofloxacin (37.74%), Florfenicol (35.85%), Chlortetracycline (33.96%), Difloxacin (32.08%), Danofloxacin (28.30%), Chloramphenicol (20.75%), and Doxycycline (16.98%). Low levels of resistance were against Ciprofloxacin (7.55%) and Gentamicin (5.66%). Susceptible (S), intermediate (I), and resistant (R) percentages of the isolates to the antimicrobial agents were showed in Table 1. Multiple resistances were observed in all of the isolates.

International 3 4. Discussion E. coli is one of the most important factors of making economic losses resulting from diseases in commercial poultry farms and causing mortality as well as condemning the carcasses in slaughterhouses [14]. Antibiotics are the drugs used for preventing economic losses caused by E. coli and increasing the production efficiency [10]. But increasing consumption of these drugs leads to scattering them into manure and other poultry wastes and transferring them to humans by their remains in carcasses and can be the origin of bacterial resistances, mortality, and increase of the human hospitalization in hospitals [3, 15]. After a treatment by a selective pressure resulting from treatment by antibiotics, bacteria inside the body of diseased poultry tend to be changed into resistant strains. Through excretion and transferring of agricultural products by avian manure [16, 17] and direct transferring of resistant strains to humans using food chain, these strains lead to transferring the resistances, making the diseases caused by more expensive bacteria, increasing the time of treatment and mortality in human [1, 18, 19]. Increasing the aforementioned resistances motivated the governments to forbid the antibiotics consumption legally in order to keep the public health; therefore consumption of some antibiotics was forbidden including those which were regarded as growth stimuli in Europe and Furazolidone, Ciprofloxacin, and Chloramphenicol in Iran. Economic benefits resulting from poultry production have always been the motor of this industry. If no solutions for increasing the production efficiency and preventing economic losses resulting from coli bacillus are presented, the antibiotics consumption will be continued illegally [20]. It can be said that investigating the ways of transferring and prevalence of these resistances in poultry for better andoptimalusageofthesedrugsishelpful.so,inthis investigation, the resistances of the 7- to 14-year-old chickens of Shahrekord industrial poultry farm were studied from April 2009 to March 2012 and the following findings were obtained. Consistent with other researches, Gentamicin has the least resistance between the antibiotics consumed by poultry [21]. The reason is its low consumption in poultry due to its very low absorption by the digestive system of poultry and, consequently, its noneffectiveness [22]. In addition, in this examination, the resistance against Ciprofloxacin has been very low because of legal prohibition for consuming this antibiotic and its disuse in breeder farms. But previous surveys done at the final stage of production process of broiler chickens show that the resistance is very high which is because of illegal consumption of Ciprofloxacin [21]. The resistances against antibiotics of Chloramphenicol, Florfenicol, Enrofloxacin, Danofloxacin, Difloxacin, Oxytetracycline, Chlortetracycline, and Sulfadimethoxine- Trimethoprim have been obtained about 20 to 45 percent. Examining the past research, this difference is related to the time of sampling which emphasizes that the antibiotics consumption at the time of breeding creates a selective pressure for the bacteria in order for the resistant strains to be selected. The high resistance of Erythromycin and Tylosin is also related to their impact on Mycoplasma which is highly used in breeders against Mycoplasma synoviae and Mycoplasma gallisepticum. Finally, from the findings of past studies, it can be concluded that incidence of resistances against antibiotics is different and increasing. For better usage and detecting the antibiotics, they should be tested by antimicrobial test. In is the only way upon which warranty the efficiency of the drug, consequently, the amount and frequency of antibiotic use is reduced, the economic benefits are accessible and spreading of antibiotic resistances are controllable. Conflict of Interests The authors declare that they have no conflict of interests. References [1] M. T. W. van der Sluijs, E. M. Kuhn, and B. Makoschey, A single vaccination with an inactivated bovine respiratory syncytial virus vaccine primes the cellular immune response in calves with maternal antibody, BMC Veterinary Research, vol. 6, article 2, 2010. [2] W. Witte, Medical consequences of antibiotic use in agriculture, Science, vol. 279, no. 5353, pp. 996 997, 1998. [3] G. C. Turtura, S. Massa, and H. Ghazvinizadeh, Antibiotic resistanceamongcoliformbacteriaisolatedfromcarcassesof commercially slaughtered chickens, Food Microbiology,vol.11,no.3-4,pp.351 354,1990. [4] H. Yang, S. Chen, D. G. White et al., Characterization of multiple-antimicrobial-resistant Escherichia coli isolates from diseased chickens and swine in China, Clinical Microbiology,vol.42,no.8,pp.3483 3489,2004. [5] J.Garau,M.Xercavins,M.Rodríguez-Carballeira et al., Emergence and dissemination of quinolone-resistant Escherichia coli in the community, Antimicrobial Agents and Chemotherapy, vol.43,no.11,pp.2736 2741,1999. [6] R. L. Lakhotia and J. F. Stephens, Drug resistance and R factors among enterobacteria isolated from eggs, Poultry Science, vol. 52,no.5,pp.1955 1962,1973. [7] Y. Sáenz, M. Zarazaga, L. Briñas, F. Ruiz-Larrea, and C. Torres, Mutations in gyra and parc genes in nalidixic acidresistant Escherichia coli strains from food products, humans and animals, Antimicrobial Chemotherapy, vol. 51, no. 4, pp. 1001 1005, 2003. [8] A. H. Linton, K. Howe, P. M. Bennett, M. H. Richmond, and E. J. Whiteside, The colonization of the human gut by antibiotic resistant Escherichia coli from chickens, Applied Bacteriology,vol.43,no.3,pp.465 469,1977. [9] V. Furtula, E. G. Farrell, F. Diarrassouba, H. Rempel, J. Pritchard, and M. S. Diarra, Veterinary pharmaceuticals and antibiotic resistance of Escherichia coli isolates in poultry litter from commercial farms and controlled feeding trials, Poultry Science, vol. 89, no. 1, pp. 180 188, 2010. [10] F.J.Angulo,K.R.Johnson,R.V.Tauxe,andM.L.Cohen, Origins and consequences of antimicrobial-resistant nontyphoidal Salmonella: implications for the use of fluoroquinolones in food animals, Microbial Drug Resistance, vol. 6, no. 1, pp. 77 83, 2000. [11] D. M. Livermore, D. James, M. Reacher et al., Trends in fluoroquinolone (ciprofloxacin) resistance in Enterobacteriaceae

4 International from bacteremias, England and Wales, 1990 1999, Emerging Infectious Diseases,vol.8,no.5,pp.473 478,2002. [12] E. A. González and J. Blanco, Serotypes and antibiotic resistance of verotoxigenic (VTEC) and necrotizing (NTEC) Escherichia coli strains isolated from calves with diarrhoea, FEMS Microbiology Letters,vol.51,no.1,pp.31 36,1989. [13] P. Wayne, Clinical and Laboratory Standards Institute (CLSI) Performance Standards for Antimicrobial Disk Susceptibility Tests, Approved Standard (M2-A9), Clinical and Laboratory Standards Institute, 9th edition, 2006. [14] C. Ewers, T. Janßen, S. Kießling, H.-C. Philipp, and L. H. Wieler, Molecular epidemiology of avian pathogenic Escherichia coli (APEC) isolated from colisepticemia in poultry, Veterinary Microbiology,vol.104,no.1-2,pp.91 101,2004. [15] T. D. Miles, W. McLaughlin, and P. D. Brown, Antimicrobial resistance of Escherichia coli isolates from broiler chickens and humans, BMC Veterinary Research, vol. 2, article7, pp. 1 9, 2006. [16] P. Cortés, V. Blanc, A. Mora et al., Isolation and characterization of potentially pathogenic antimicrobial-resistant Escherichia coli strains from chicken and pig farms in Spain, AppliedandEnvironmentalMicrobiology,vol.76,no.9,pp. 2799 2805, 2010. [17] K. E. Smith, J. M. Besser, C. W. Hedberg et al., Quinoloneresistant Campylobacter jejuni infections in Minnesota, 1992 1998, The New England Medicine, vol. 340, no. 20, pp.1525 1532,1999. [18] K. G. Naber, G. Schito, H. Botto, J. Palou, and T. Mazzei, Surveillance study in europe and brazil on clinical aspects and Antimicrobial Resistance Epidemiology in Females with Cystitis (ARESC): implications for empiric therapy, European Urology,vol.54,no.5,pp.1164 1178,2008. [19] M. E. A. de Kraker, P. G. Davey, and H. Grundmann, Mortality andhospitalstayassociatedwithresistantstaphylococcus aureus and Escherichia coli bacteremia: estimating the burden of antibiotic resistance in Europe, PLoS Medicine, vol. 8, no. 10, Article ID e1001104, 2011. [20]S.M.Zahraei,B.Eshrati,H.M.Asl,andZ.Pezeshki, Epidemiology of four main nosocomial infections in Iran during March 2007 March 2008 based on the findings of a routine surveillance system, Archives of Iranian Medicine, vol. 15, no. 12, pp. 764 766, 2012. [21] T. Zahraei Salehi and S. Farashi Bonab, Antibiotics susceptibility pattern of Escherichia coli strains isolated from chickens with colisepticemia in Tabriz province, Iran, Poultry Science,vol.5,no.7,pp.677 684,2006. [22] C. A. Ginns, G. F. Browning, M. L. Benham, G. A. Anderson, and K. G. Whithear, Antimicrobial resistance and epidemiology of Escherichia coli in broiler breeder chickens, Avian Pathology,vol.25,no.3,pp.591 605,1996.

Ecology Agronomy International Scientifica The Scientific World Journal Viruses Microbiology Submit your manuscripts at Biotechnology Research International Psyche Insects Zoology Case Reports in Cell Biology Parasitology Research Genomics Evolutionary Biology Applied & Environmental Soil Science Animals