Dexmedetomidine as an additive to local anesthetics compared with intravenous dexmedetomidine in peribulbar block for cataract surgery

Similar documents
Original Article INTRODUCTION. Abstract

Rajaclimax Kirubahar, Bose Sundari, Vijay Kanna*, Kanakasabai Murugadoss

Patients and Methods

Dexmedetomidine. Dr.G.K.Kumar,M.D.,D.A., Assistant Professor, Madras medical college,chennai. History

Hemodynamic effects of dexmedetomidine-- fentanyl vs. nalbuphine--propofol in plastic surgery

A Clinical Study of Dexmedetomidine under Combined Spinal Epidural Anaesthesia at a Tertiary Care Hospital

Study of Dexmedetomidine as intramuscular premedication in outpatient cataract surgery: A placebo controlled study

DOI /yydb medetomidine a review of clinical applications J. Curr Opin Anaesthesiol

Impact of Dexmedetomidine on Bupivacaine in ultrasound-guided supraclavicular brachial plexus block in forearm surgeries

SCIENTIFIC COOPERATIONS MEDICAL WORKSHOPS July, 2015, Istanbul - TURKEY

Dr. PratekKoolwal, Dr.BribalBaj, DrKashif M Madani, Dr.MohitSomani, Dr. Vijay Mathur.

Ashraf Darwish, Rehab Sami, Mona Raafat, Rashad Aref and Mohamed Hisham

International Journal of Health Sciences and Research ISSN:

Intraoperative Sedation During Epidural Anesthesia: Dexmedetomidine Vs Midazolam

Corresponding author: V. Dua, Department of Anaesthesia, BJ Wadia Hospital for Children, Parel, Mumbai, India.

Comparison of dexmedetomidine v/s propofol used as adjuvant with combined spinal epidural anaesthesia for joint replacement surgeries

Comparison of dexmedetomidine and propofol for conscious sedation in inguinal hernia repair: A prospective, randomized, controlled trial

PDF of Trial CTRI Website URL -

The effects of intravenous dexmedetomidine on spinal anesthesia: comparision of different dose of dexmedetomidine

Effective dose of dexmedetomidine to induce adequate sedation in elderly patients under spinal anesthesia

The comparison of the effects of intravenous ketamine or dexmedetomidine infusion on spinal block with bupivacaine

Study of efficacy and safety of intravenous Dexmedetomidine infusion as an adjuvant to Bupivacaine spinal anaesthesia in Abdominal hysterectomy

THE EFFECTS OF MIDAZOLAM AND DEXMEDETOMIDINE INFUSION ON Peri-OPERATIVE ANXIETY IN REGIONAL ANESTHESIA

Associate Professor, Department of Anaesthesiology, Government Thoothukudi Medical College, Thoothukudi, Tamil Nadu, India, 2

Propofol vs Dexmedetomidine

COMPARATIVE STUDY OF INTRAVENOUS DEXMEDETOMIDINE PLUS INTRATHECAL BUPIVACAINE VS INTRATHECAL BUPIVACAINE ALONE FOR PROLONGATION OF SPINAL ANALGESIA

Chronic subdural hematoma (CSDH) is one of the most

A Comparative Evaluation of Intranasal Dexmedetomidine and Intranasal Midazolam for Premedication in Pediatric Surgery

Original Article Perineural administration of dexmedetomidine in combination with ropivacaine prolongs axillary brachial plexus block

Study between clonidine and dexmedetomidine in attenuation of pressor response during endotracheal intubation

Effects of Dexmedetomidine on Serum Interleukin-6, Hemodynamic Stability, and Postoperative Pain Relief in Elderly Patients under Spinal Anesthesia

Preliminary UK experience of dexmedetomidine, a novel agent for postoperative sedation in the intensive care unit

Role of Dexmedetomidine as an Anesthetic Adjuvant in Laparoscopic Surgery

Original Article Effects of low dose midazolam on bradycardia and sedation during dexmedetomidine infusion

Parthasarathy et al. Sri Lankan Journal of Anaesthesiology: 25(2):76-81(2017)

JMSCR Vol 06 Issue 10 Page October 2018

Dexmedetomidine and its Injectable Anesthetic-Pain Management Combinations

Study the Effect of Dexmedetomidine on Emergence Agitation after Nasal Surgeries

Maduranthagam. 2 Associate Professor, Department Of Anesthesia, Karpagavinayaga Medical College And Hospital, Maduranthagam.

Comparison of Intensive Care Unit Sedation Using Dexmedetomidine, Propofol, and Midazolam

ASMIC 2016 DEXMEDETOMIDINE IN THE INTENSIVE CARE UNIT DR KHOO TIEN MENG

Suitability of Antibiotic Treatment for CAP (CAPTIME) The duration of antibiotic treatment in community acquired pneumonia (CAP)

Quality of MRI pediatric sedation: Comparison between intramuscular and intravenous dexmedetomidine

Evaluation of effect of adding dexmedetomidine to hyperbaric bupivacaine in spinal anaesthesia

Post-graduate Trainee, Department of Anaesthesiology and Critical Care, Gauhati Medical College and Hospital, Guwahati, Assam, India, 2

INTRAVENOUS DEXMEDETOMIDINE PROLONGS BUPIVACAINE SPINAL ANALGESIA

What dose of methadone should I use?

Dexmedetomidine in Regional Anesthesia: The Current Perspective

Appendix: Outcomes when Using Adjunct Dexmedetomidine with Propofol Sedation in

Metacam. The Only NSAID Approved for Cats in the US. John G. Pantalo, VMD Professional Services Veterinarian. Think easy. Think cat. Think METACAM.

Comparison of Clonidine and Dexmedetomidine on Cardiovascular Stability in Laparoscopic Cholecystectomy

Comparison of two doses of intranasal dexmedetomidine as premedication in children

Comparison of anesthesia with a morphine lidocaine ketamine infusion or a morphine lidocaine epidural on time to extubation in dogs

SUMMARY OF PRODUCT CHARACTERISTICS

PAIN Effect of intra-articular dexmedetomidine on postoperative analgesia after arthroscopic knee surgery

Regional and Local Anesthesia of the Wrist and Hand Aided by a Forearm Sterile Elastic Exsanguination Tourniquet - A Review

ISSN X (Print) Research Article. *Corresponding author S. Kiran Kumar

JMSCR Vol 05 Issue 01 Pages January 2017

A SYSTEMATIC REVIEW ON THE USE OF DEXMEDETOMIDINE AS A SOLE AGENT FOR INTRAVENOUS MODERATE SEDATION

Dexmedetomidine Versus Propofol for Sedation in Patients Undergoing Vitero-Retinal Surgery Under Peribulbar-Block

Premedication with alpha-2 agonists procedures for monitoring anaesthetic

Egyptian Society of Anesthesiologists. Egyptian Journal of Anaesthesia.

Mouse Formulary. The maximum recommended volume of a drug given depends on the route of administration (Formulary for Laboratory Animals, 3 rd ed.

A randomized control study of dexmedetomidine versus fentanyl as an anesthetic adjuvant in supratentorial craniotomies

Xiaowei Qian, Hang Zhao, Yuquan Rao, Yang Nan, Zhongsu Wang, Xiaoqing Wang, Qingquan Lian, Jun Li

Dexmedetomidine vs. Propofol for Short-Term Sedation of Postoperative Mechanically Ventilated Patients

SOP #: Page: 1 of 6 Rodent Analgesia

Original Article Dose-dependent effects of dexmedetomidine during one-lung ventilation in patients undergoing lobectomy

Comparison of several dosing schedules of intravenous dexmedetomidine in elderly patients under spinal anesthesia

N.C. A and T List of Approved Analgesics 1 of 5

DISSOCIATIVE ANESTHESIA

Invasive and noninvasive procedures

SUMMARY OF PRODUCT CHARACTERISTICS

Int. J. Pharm. Sci. Rev. Res., 36(1), January February 2016; Article No. 38, Pages: *Corresponding author s

RETRACTED. Dexmedetomidine infusion is associated with enhanced renal function after thoracic surgery

A COMPARATIVE STUDY OF MIDAZOLAM, PROPOFOL AND DEXMEDETOMIDINE INFUSIONS FOR SEDATION IN ME- CHANICALLY VENTILATED PATIENTS IN ICU

Dıfferent Doses Of Dexmedetomidine On Controllıng Haemodynamıc Responses To Tracheal Intubatıon

Efficacy of forearm tourniquet for local intravenous regional anesthesia in bilateral hand surgery

SUMMARY OF PRODUCT CHARACTERISTICS

Associate Professor, Department of Anaesthesiology, Rangaraya Medical College, Kakinada, East Godavari, Andhra Pradesh, India, 2

Haemodynamic and anaesthetic advantages of dexmedetomidine

POST-OPERATIVE ANALGESIA AND FORMULARIES

TELAZOL (tiletamine and zolazepam for injection) IV Induction Claim FAQs 1, 2

All India Ophthalmological Society members survey results: Cataract surgery antibiotic prophylaxis current practice pattern 2017

Comparative Study of Dexmedetomidine and Propofol for Intraoperative Sedation During Surgery Under Regional Anaesthesia

A randomised prospective comparative study of evaluation of dexmedetomidine an adjuvant to ropivacaine for ultrasound guided supraclavicular block

S Kumar, B B Kushwaha, R Prakash, S Jafa, A Malik, R Wahal, J Aggarwal, R Kapoor

Comparison of dexmedetomidine and propofol in mechanically ventilated patients with sepsis: A pilot study

Susan Becker DNP, RN, CNS, CCRN, CCNS Marymount University, Arlington, VA

Anesthetic regimens for mice, rats and guinea pigs

SUMMARY OF PRODUCT CHARACTERISTICS

Pain Management in Racing Greyhounds

Alfaxan. (alfaxalone 10 mg/ml) Intravenous injectable anesthetic for use in cats and dogs. TECHNICAL NOTES DESCRIPTION INDICATIONS

Review Article The Effects of Intravenous Dexmedetomidine Injections on IOP in General Anesthesia Intubation: A Meta-Analysis

A New Advancement in Anesthesia. Your clear choice for induction.

SUMMARY OF PRODUCT CHARACTERISTICS. Narcostart 1 mg/ml solution for injection for cats and dogs (NL, AT, BE, CZ, EL, HU, IS, LU, PL, SK)

1. NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER AND OF THE MANUFACTURING AUTHORISATION HOLDER RESPONSIBLE FOR BATCH RELEASE, IF DIFFERENT

Original Article Different doses of dexmedetomidine in children with non-tracheal intubation intravenous general anesthesia

A Comparison of Dexmedetomidine and Midazolam for Sedation in Gynecologic Surgery Under Epidural Anesthesia

Use of Dexmedetomidine for Sedation of Children Hospitalized in the Intensive Care Unit

Transcription:

Original Article Dexmedetomidine as an additive to local anesthetics compared with intravenous dexmedetomidine in peribulbar block for cataract surgery ABSTRACT Background: No studies compared parenteral dexmedetomidine with its use as an adjuvant to ophthalmic block. We compared between adding dexmedetomidine to bupivacaine in peribulbar block and intravenous (IV) dexmedetomidine during peribulbar block for cataract surgery. Materials and Methods: A prospective, randomized, double-blind study on 90 patients for cataract surgery under peribulbar anesthesia. Study included three groups; all patients received 10 ml of peribulbar anesthesia and IV infusion of drugs as follows: : Received a mixture of bupivacaine 0.5% (4.5 ml) + lidocaine 2% (4.5 ml) + normal saline (1 ml) + 150 IU hyaluronidase + IV infusion of normal saline, : Received mixture of bupivacaine 0.5% (4.5 ml) + lidocaine 2% (4.5 ml) + dexmedetomidine 50 μg (1 ml) +150 IU hyaluronidase + IV infusion of normal saline and I: Received mixture of bupivacaine 0.5% (4.5 ml) + lidocaine 2% (4.5 ml) + normal saline (1 ml) +150 IU hyaluronidase + IV dexmedetomidine 1 µg/kg over 10 min; followed by 0.4 µg/kg/h IV infusion. We recorded onset, duration of block, Ramsay Sedation Score, intra-ocular pressure (IOP), hemodynamics, and adverse effects. Results: There was a significant decrease in the onset of action and increase in the duration of block in as compared with the and I. Mean Ramsay Sedation Score was higher in I. The IOP showed a significant decrease in and I 10 min after injection (P < 0.01). Heart rate showed a significant decrease in I in comparison with the two other groups (P < 0.05). Only two patients in I developed bradycardia. Conclusion: Dexmedetomidine as an additive shortens onset time, prolong block durations and significantly decreases the IOP with minimal side effects. IV dexmedetomidine, in addition, produces intra-operative sedation with hemodynamic stability. Key words: Cataract surgery; dexmedetomidine; peribulbar block Introduction Ocular surgery may be performed under topical, regional or general anesthesia. The first recorded use of regional Website: www.saudija.org Access this article online Quick Response Code anesthesia for surgery was the instillation of cocaine into the conjunctival sac in 1884 by an Austrian ophthalmologist. [1] This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms. For reprints contact: reprints@medknow.com DOI: 10.4103/1658-354X.169475 How to cite this article: Abdelhamid AM, Mahmoud A, Abdelhaq MM, Yasin HM, Bayoumi A. Dexmedetomidine as an additive to local anesthetics compared with intravenous dexmedetomidine in peribulbar block for cataract surgery. Saudi J Anaesth 0;0:0. Abdelhamid A M, Mahmoud AAA 1, Abdelhaq MM 2, Yasin HM 3, Bayoumi ASM 4 Departments of Anesthesia and 4 Ophthalmology, Faculty of Medicine, Benha University, Benha, 1 Department of Anesthesia, Faculty of Medicine, Beni Suef University, Beni Suef, 2 Department of Anesthesia, Faculty of Medicine, Cairo University, Giza, 3 Department of Anesthesia, Faculty of Medicine, Al Fayoum University, Faiyum, Egypt Address for correspondence: Dr. Ahmed Abdelaal Ahmed Mahmoud, 39 Mousa Ebn Nousir Street, 7 th District, Nasr City, P.O. 11471, Cairo, Egypt. E-mail: carnitin7@yahoo.com 2016 Saudi Journal of Anesthesia Published by Wolters Kluwer - Medknow 47

Recently, a major change in anesthetic practice has taken place, and the majority of ophthalmic surgical patients now undergo regional rather than general anesthesia. This change has been driven in part by the pressure to undertake surgical procedures as day cases, regional anesthesia is more economic, easy to perform, and the risk involved is less. Orbital regional anesthesia can be done using a retrobulbar (intra-conal) block peribulbar (extra-conal) block or sub-tenon s block. Davis and Mandel [2] in 1986 described the peribulbar block, peribulbar block has delayed onset and need a higher volume of local anesthetic (LA) than a retrobulbar block. But peribulbar block is away from intra-conal space and so produce fewer complication. [3,4] Many additives such as clonidine, hyaluronidase, sodium bicarbonate, muscle relaxants, and opioids were added to LAs drugs in the ocular block for rapid the onset and long the duration of analgesic effect of LA. [5-8] Dexmedetomidine is a selective alpha two adrenoreceptor agonist. It provides dose-dependent sedation, analgesia, sympatholysis, and anxiolysis without relevant respiratory depression. [9] Now, dexmedetomidine is used as adjuvant to LA drugs in peripheral nerve block, brachial plexus block and intrathecal anesthesia with satisfactory results. [10] Our study aimed to compare between intravenously (IV) administered dexmedetomidine and its use as an additive to LA for peribulbar block. The comparison focused on the efficacy and safety of dexmedetomidine in either situation. Materials and Methods This prospective randomized, double-blind, and controlled study was conducted on 90 patients American Society of Anesthesiologists I and II, age ranged between 28 and 65 years and scheduled for eye surgery under local peribulbar anesthesia. Patient informed written consent and Local Ethical Committee approval have been obtained before patient s allocation. Exclusion criteria included age younger than 18 years, the usual contraindications for regional anesthesia such as patients refusing LA, clotting abnormalities, impaired mental status, or allergy to any of the study medications. Furthermore, patients were excluded if they had the severe cardiac disease, chronic obstructive lung disease, and a history of sleep apnea. These patients were randomly allocated using a computergenerated list into three equal groups all received 10 ml of local peribulbar anesthesia and IV infusion of drugs as follows: (control group): Received mixture of bupivacaine 0.5% (4.5 ml) + lidocaine 2% (4.5 ml) + normal saline (1 ml) +150 IU hyaluronidase + IV infusion of normal saline. : Received mixture of bupivacaine 0.5% (4.5 ml) + lidocaine 2% (4.5 ml) + dexmedetomidine 50 μg (1 ml) + 150 IU hyaluronidase + IV infusion of normal saline. I: Received mixture of bupivacaine 0.5% (4.5 ml) + lidocaine 2% (4.5 ml) + normal saline (1 ml) + 150 IU hyaluronidase + IV dexmedetomidine 1 µg/kg over 10 min; followed by 0.4 µg/kg/h IV infusion. All infusions were started just before peribulbar injection and stopped at the end of surgery. At the preoperative visit, the anesthetic technique and study protocol were explained to the patients in details. The patients fasted for 8 h and were un-premedicated to the operating room. A peripheral IV line inserted and standard monitoring including noninvasive blood pressure (BP), five leads electrocardiography, heart rate (HR), and oxygen saturation applied. Supplemental O 2 at 2 L/min via nasal cannula was used throughout the procedure. 26-G, 13 mm a short beveled needle 26-G, 13-mm inserted through the conjunctiva in the inferotemporal quadrant as far laterally as possible. The needle directed perpendicularly parallel to the orbital floor for the whole length of the needle then 5 ml of study drug mixture injected slowly after negative aspiration to avoid intravascular injection. The remaining 5 ml of the drug injected at 2 mm medial and inferior to the supraorbital notch. Then ocular massage applied gently to the eyeball. The following measures were assessed: 1. Onset of block: Time started from injection of LAs till complete paralysis of lids and globe. 2. Duration of block which was the time started from complete block till eyes move freely. 3. Sedation level: By Ramsay Sedation Scale at every 10 min during surgery and every 30 min during first 2 h [Table 1] [11] 4. Intra-ocular pressure (IOP): Before injection of LA (baseline) and after a complete akinesia of the globe before surgical incision. 5. Patients hemodynamics: HR and mean arterial blood pressure (MAP) recorded every 5 min. During the surgery 48 Saudi Journal of Anesthesia / January-March 2016 / Volume 10 / Issue 1

and in the immediate postoperative period (at 15 and 30 min). 6. Adverse effects including all of the following: Bradycardia (HR <50 beats/min). Hypotension (MAP <50 mmhg sustained for more than 10 min). Respiratory rate (RR) depression (RR <10/min). Oxygen desaturation (SpaO 2 <92%) recorded. Statistical analysis Data analysis was done using SPSS version 21(Armonk, NY: IBM Corp). Quantitative data presented as mean and standard deviation and were analyzed by one-way ANOVA test. MAP and HR data were analyzed by repeated measure ANOVA test. Qualitative data presented as numbers and percentage and were analyzed using Chi-square test. Results Demographic characteristics and time of the procedure showed the nonsignificant difference among groups [Table 2]. There was a significant decrease in the onset of the block in in comparison with both other groups. Post-hoc analysis revealed no difference between Groups I and III [Table 3a and b]. Duration of the block in patients showed a significant increase in the length of the block followed by I in comparison with [Table 4a and b]. Mean Ramsay Sedation Score in I showed a significant increase in comparison with the two other groups while there was no significant difference between and [Figure 1]. There was a significant decrease in IOP in and Group III 10 min after injection. Post-hoc analysis revealed that I showed a significant decrease in comparison with Groups I and II. It also revealed that showed a highly significant decrease in comparison with (P < 0.005) [Table 5a and b]. Heart rate showed a significant decrease in I as compared to the other two groups (P < 0.05) during the time of dexmedetomidine infusion. MAP showed a nonsignificant difference among groups [Figures 2 and 3]. Regarding complications, only two patients in I developed bradycardia treated by atropine 0.01 mg/kg. Table 1: Ramsay Sedation Scale Score Response 1 Anxious or restless or both 2 Cooperative, orientated and tranquil 3 Responding to commands 4 Brisk response to a stimulus 5 Sluggish response to a stimulus 6 No response to a stimulus Table 2: Demographic characteristics Characteristic I Test of P significance Age (years) 54.3±7.4 53.7±6.7 52.5±6.7 F=0.52 0.59 Sex Male 18 16 20 χ 2 =1.1 0.57 Female 12 14 10 Weight (kg) 79.6±10.3 78.03±9.2 80.6±10.8 F=0.49 0.61 Height (cm) 170.6±7.8 172.5±7.6 171.8±7.67 F=0.48 0.6 ASA I 11 13 10 χ 2 =0.66 0.72 II 19 17 20 Time of surgery (min) 27.3±8.02 25.7±6.96 28.2±7.6 F=0.8 0.4 ASA: American society of anesthesiologists Table 3a: Onset of block Onset of block I F-test P Onset of block (min) 6.6±1.54 5.7±1.68 6.3±0.84 F=3.6 0.03 Table 3b: Onset of block Group t-test P 2.3 0.024 I 1.04 0.3 I 1.84 0.07 Table 4a: Duration of block Duration of block I F-test P Duration of block 180.1±22.6 282.4±39 213.1±41.2 F=65.7 <0.001 (min) Table 4b: Duration of block Group t-test P 12.4 <0.001 I 3.8 <0.001 I 6.68 <0.001 Discussion Dexmedetomidine is a selective alpha two adrenoreceptor agonist. It provides dose-dependent sedation and Saudi Journal of Anesthesia / January-March 2016 / Volume 10 / Issue 1 49

Table 5a: Comparison among groups regarding intra-ocular pressure (mmhg) Intra-ocular I F-test P pressure Baseline 15.5±1.7 14.9±2.02 15.3±1.8 0.84 0.4 After injection 15.7±1.5 14.4±1.8 12.6±2.4 18.4 <0.01** **Statistically significant Figure 1: Ramsay sedation score Table 5b: Comparison among groups regarding intra-ocular pressure (mmhg) Intra-ocular pressure t-test 2.9 0.005 I 5.8 <0.001 I 3.2 0.002 P Figure 2: Comparison among groups regarding heart rate Figure 3: Comparison among groups regarding mean arterial blood pressure analgesia without relevant respiratory depression, now dexmedetomidine is used as adjuvant to LA drugs in peripheral nerve block and eye block. In this study, we noticed that there was a significant decrease in the onset of block when use dexmedetomidine as adjuvant to LA in patients undergoing cataract surgery with peribulbar block () 5.7 ± 1.68 min in comparison to when use LA alone () 6.6 ± 1.54 min or when use dexmedetomidine as IV sedation with peribulbar block (I) 6.3 ± 0.84 min P = 0.03. On the other hand, duration of the block showed a significant increase in the length of the block in 282.4 ± 39 min followed by I 213.1 ± 41.2 min in comparison with 180.1 ± 22.6 min P < 0.001. About adequate level of sedation, mean Ramsay sedation score in I showed a significant increase in comparison with the two other groups while there was no significant difference between and. Furthermore, there was a significant decrease in IOP in 14.4 ± 1.8 mmhg and I 12.6 ± 2.4 mmhg 10 min after injection in comparison to group I 15.7 ± 1.5 mmhg, post-hoc analysis revealed that I showed a significant decrease in comparison with Groups I and II. It also revealed that Group II showed a highly significant decrease in comparison with (P < 0.005). Finally, HR showed a significant decrease in I as compared to the other two groups (P < 0.05). But MAP showed a nonsignificant difference among groups. The effect of dexmedetomidine as an adjuvant to LA in patients undergoing cataract surgery with peribulbar block in the present study accepted by Channabasappa et al. [12] reported that a combination of bupivacaine and lidocaine with dexmedetomidine in peribulbar anesthesia provides the sedation that enables full cooperation. This mixture also helps to decrease the IOP significantly, shorten sensory and motor block onset time and extend motor and sensory block durations. And this goes in line with the current study carried out by Memis et al. [13] who concluded that the addition of 0.5 µg/kg dexmedetomidine to lidocaine 1% for IV regional anesthesia (IVRA) improves quality of anesthesia and perioperative analgesia without causing side effects. Furthermore, Kol et al., [14] found that the addition of dexmedetomidine to prilocaine in IVRA led to shortened sensory block onset 50 Saudi Journal of Anesthesia / January-March 2016 / Volume 10 / Issue 1

time and prolonged sensory block recovery time without causing adverse effects. Esmaoglu et al. [15] reported that dexmedetomidine as an adjuvant to levo-bupivacaine for axillary brachial plexus block markedly prolongs the duration of the block and shortens the onset time in addition to prolongation of postoperative analgesia. In the present study, IV administration of dexmedetomidine during peribulbar block, prolongs the duration of block, decreases the IOP and provides a satisfactory level of intraoperative sedation with hemodynamic stability. Although akinesia and analgesia can be achieved with a regional block, appropriate sedation may lower the IOP and pain on injection, prevent the hypertensive response to anxiety and LA injection, and provide patient comfort. The mechanism of action of dexmedetomidine is activation of the receptors in the brain, and spinal cord inhibits neuronal firing by presynaptic activation of the α 2 adrenoceptor inhibits the release of norepinephrine, terminating the propagation of pain signals. Postsynaptic activation of α 2 adrenoceptors in the central nervous system inhibits the sympathetic activity and thus can decrease BP and HR. Combined, these effects can produce analgesia, sedation; also the responses to activation of the receptors include contraction of vascular and other smooth muscle and decreased IOP. Abdalla et al. [16] who studied the effects of IV infusions of a small dose of dexmedetomidine during ophthalmic surgery under LA (0.5 µg/kg.) for 10 min followed by (0.2 µg/kg/h) for 50 min. They noticed that the dexmedetomidine in that dose has an adequate control of HR, BP and decreases IOP in addition to a sedative effect. Rutkowska et al. [17] examined the effect of parenteral dexmedetomidine on patients with the end-stage renal disease during brachial plexus block and concluded that it can prolong the duration of brachial plexus block. The previous studies [12-17] provide an evidence that dexmedetomidine through either parenteral or systemic route can augment the regional blocks. Our study represents another aspect for the augmentation of the regional blocks but this time in the ophthalmic regional block. Conclusion Dexmedetomidine is a useful drug as an additive to bupivacaine in peribulbar anesthesia, as it shortens onset time, prolong block durations, significantly decreases the IOP with minimal side effects. On the other hand, IV administration of dexmedetomidine during peribulbar block, extending the time of block, reduces the IOP and provides a satisfactory level of intra-operative sedation with hemodynamic stability. Financial support and sponsorship Nil. Conflicts of interest There are no conflicts of interest. References 1. Goerig M, Bacon D, van Zundert A. Carl Koller, cocaine, and local anesthesia: Some less known and forgotten facts. Reg Anesth Pain Med 2012;37:318-24. 2. Davis DB 2 nd, Mandel MR. Posterior peribulbar anesthesia: An alternative to retrobulbar anesthesia. J Cataract Refract Surg 1986;12:182-4. 3. Davis DB 2 nd, Mandel MR. Efficacy and complication rate of 16,224 consecutive peribulbar blocks. A prospective multicenter study. J Cataract Refract Surg 1994;20:327-37. 4. Riad W, Akbar F. Ophthalmic regional blockade complication rate: A single center audit of 33,363 ophthalmic operations. J Clin Anesth 2012;24:193-5. 5. Eldeen HM, Faheem MR, Sameer D, Shouman A. Use of clonidine in peribulbar block in patients undergoing cataract surgery. Aust J Basic Appl Sci 2011;5:247-50. 6. Sarvela PJ. Comparison of regional ophthalmic anesthesia produced by ph-adjusted 0.75% and 0.5% bupivacaine and 1% and 1.5% etidocaine, all with hyaluronidase. Anesth Analg 1993;77:131-4. 7. Zahl K, Jordan A, McGroarty J, Sorensen B, Gotta AW. ph-adjusted bupivacaine and hyaluronidase for peribulbar block. Anesthesiology 1990;72:230-2. 8. Abdellatif AA, El Shahawy MA, Ahmed AI, Almarakbi WA, Alhashemi JA. Effects of local low-dose rocuronium on the quality of peribulbar anesthesia for cataract surgery. Saudi J Anaesth 2011;5:360-4. 9. Paris A, Tonner PH. Dexmedetomidine in anesthesia. Curr Opin Anaesthesiol 2005;18:412-8. 10. Gandhi RR, Shah AA, Patel I. Use of dexmedetomidine along with bupivacaine for brachial plexus block. Natl J Med Res 2012;2:67-9. 11. Ramsay MA, Savege TM, Simpson BR, Goodwin R. Controlled sedation with alphaxalone-alphadolone. Br Med J 1974;2:656-9. 12. Channabasappa SM, Shetty VR, Dharmappa SK, Sarma J. Efficacy and safety of dexmedetomidine as an additive to local anesthetics in peribulbar block for cataract surgery. Anesth Essays Res 2013;7:39-43. 13. Memis D, Turan A, Karamanlioglu B, Pamukçu Z, Kurt I. Adding dexmedetomidine to lidocaine for intravenous regional anesthesia. Anesth Analg 2004;98:835-40. 14. Kol IO, Ozturk H, Kaygusuz K, Gursoy S, Comert B, Mimaroglu C. Addition of dexmedetomidine or lornoxicam to prilocaine in intravenous regional anesthesia for hand or forearm surgery: A randomized controlled study. Clin Drug Investig 2009;29:121-9. 15. Esmaoglu A, Yegenoglu F, Akin A, Turk CY. Dexmedetomidine added to levobupivacaine prolongs axillary brachial plexus block. Anesth Analg 2010;111:1548-51. 16. Abdalla MI, Al Mansouri F, Bener A. Dexmedetomidine during local anesthesia. J Anesth 2006;20:54-6. 17. Rutkowska K, Knapik P, Misiolek H. The effect of dexmedetomidine sedation on brachial plexus block in patients with end-stage renal disease. Eur J Anaesthesiol 2009;26:851-5. Saudi Journal of Anesthesia / January-March 2016 / Volume 10 / Issue 1 51