Translational Perioperative and Pain Medicine ISSN: (Open Access) Review Article

Similar documents
ASMIC 2016 DEXMEDETOMIDINE IN THE INTENSIVE CARE UNIT DR KHOO TIEN MENG

DOI /yydb medetomidine a review of clinical applications J. Curr Opin Anaesthesiol

The evolving approach to sedation in ventilated patients: a real world perspective

Susan Becker DNP, RN, CNS, CCRN, CCNS Marymount University, Arlington, VA

Dexmedetomidine. Dr.G.K.Kumar,M.D.,D.A., Assistant Professor, Madras medical college,chennai. History

Comparison of dexmedetomidine and propofol in mechanically ventilated patients with sepsis: A pilot study

Disclosures. Dexmedetomidine: The Good, The Bad and The Delirious. The Delirious. Objectives. Characteristics of Delirium. Definition of Delirium

Propofol vs Dexmedetomidine

A COMPARATIVE STUDY OF MIDAZOLAM, PROPOFOL AND DEXMEDETOMIDINE INFUSIONS FOR SEDATION IN ME- CHANICALLY VENTILATED PATIENTS IN ICU

Dexmedetomidine for Sedation of Neonates with HIE Undergoing Therapeutic Hypothermia: A Single-Center Experience

Evaluation of dexmedetomine in anesthesia care for elderly patients with obstructive sleep apnea

Study the Effect of Dexmedetomidine on Emergence Agitation after Nasal Surgeries

PDF of Trial CTRI Website URL -

Therapeutics and clinical risk management (2011) Vol.7:291~299. Dexmedetomidine hydrochloride as a long-term sedative.

Corresponding author: V. Dua, Department of Anaesthesia, BJ Wadia Hospital for Children, Parel, Mumbai, India.

DISSOCIATIVE ANESTHESIA

Preliminary UK experience of dexmedetomidine, a novel agent for postoperative sedation in the intensive care unit

Appendix: Outcomes when Using Adjunct Dexmedetomidine with Propofol Sedation in

The Addition of Dexmedetomidine as an Adjunctive Therapy to Benzodiazepine Use in Alcohol Withdrawal Syndrome

NIH Public Access Author Manuscript J Crit Care. Author manuscript; available in PMC 2013 July 28.

Review Article The Effects of Intravenous Dexmedetomidine Injections on IOP in General Anesthesia Intubation: A Meta-Analysis

A SYSTEMATIC REVIEW ON THE USE OF DEXMEDETOMIDINE AS A SOLE AGENT FOR INTRAVENOUS MODERATE SEDATION

Study between clonidine and dexmedetomidine in attenuation of pressor response during endotracheal intubation

Pain Management in Racing Greyhounds

Use of Dexmedetomidine for Sedation of Children Hospitalized in the Intensive Care Unit

Dexmedetomidine for prevention of delirium in elderly patients after non-cardiac surgery: a randomised, double-blind, placebo-controlled trial

Current Strategies In ICU Sedation

Premedication with alpha-2 agonists procedures for monitoring anaesthetic

Study of Dexmedetomidine as intramuscular premedication in outpatient cataract surgery: A placebo controlled study

A New Advancement in Anesthesia. Your clear choice for induction.

Original Contributions

PAIN Effect of intra-articular dexmedetomidine on postoperative analgesia after arthroscopic knee surgery

Dexmedetomidine for Sedation in the Critical Care Setting: An Economic Assessment

Original Article INTRODUCTION. Abstract

SCIENTIFIC COOPERATIONS MEDICAL WORKSHOPS July, 2015, Istanbul - TURKEY

Effects of different doses of dexmedetomidine on inflammatory factors and T lymphocyte subsets in elderly patients undergoing laparoscopic surgery

Comparison of Intensive Care Unit Sedation Using Dexmedetomidine, Propofol, and Midazolam

Original Article The protective effects of dexmedetomidine on the liver and kidney injury in heat stroke rats

Thesis submitted for the partial fulfillment for the requirement of the degree of DM (Neuroanesthesiology) of SCTIMST. Dr. Gopala Krishna K N

N.C. A and T List of Approved Analgesics 1 of 5

Dexmedetomidine post-treatment induces neuroprotection via activation of extracellular signal-regulated kinase in rats with subarachnoid haemorrhage

RETRACTED. Dexmedetomidine infusion is associated with enhanced renal function after thoracic surgery

Associate Professor, Department of Anaesthesiology, Government Thoothukudi Medical College, Thoothukudi, Tamil Nadu, India, 2

Hemodynamic effects of dexmedetomidine-- fentanyl vs. nalbuphine--propofol in plastic surgery

Role of Dexmedetomidine as an Anesthetic Adjuvant in Laparoscopic Surgery

Intraoperative Sedation During Epidural Anesthesia: Dexmedetomidine Vs Midazolam

TITLE: Dexmedetomidine for Sedation of Patients in the ICU or PICU: Review of Clinical Effectiveness and Safety

T u l a n e U n i v e r s i t y I A C U C Guidelines for Rodent & Rabbit Anesthesia, Analgesia and Tranquilization & Euthanasia Methods

Rajaclimax Kirubahar, Bose Sundari, Vijay Kanna*, Kanakasabai Murugadoss

Ashraf Darwish, Rehab Sami, Mona Raafat, Rashad Aref and Mohamed Hisham

Metacam. The Only NSAID Approved for Cats in the US. John G. Pantalo, VMD Professional Services Veterinarian. Think easy. Think cat. Think METACAM.

Additive analgesic effect of dexmedetomidine and dezocine administered intrathecally in a mouse pain model

The Effects of 2-Adrenergic Receptor Agonist Dexmedetomidine on Hemodynamic Response in Direct Laryngoscopy

A Clinical Study of Dexmedetomidine under Combined Spinal Epidural Anaesthesia at a Tertiary Care Hospital

Evaluation of efficacy of sedative and analgesic effects of single IV dose of dexmedetomidine in post-operative patients

What dose of methadone should I use?

POST-OPERATIVE ANALGESIA AND FORMULARIES

Protocol DESIRE trial

Clinical applicability of dexmedetomidine for sedation, premedication and analgesia in cats 1 / 2007

Dr. PratekKoolwal, Dr.BribalBaj, DrKashif M Madani, Dr.MohitSomani, Dr. Vijay Mathur.

Highly variable pharmacokinetics of dexmedetomidine during intensive care: a case report

Int. J. Pharm. Sci. Rev. Res., 36(1), January February 2016; Article No. 38, Pages: *Corresponding author s

Dıfferent Doses Of Dexmedetomidine On Controllıng Haemodynamıc Responses To Tracheal Intubatıon

SUMMARY OF PRODUCT CHARACTERISTICS

A randomized control study of dexmedetomidine versus fentanyl as an anesthetic adjuvant in supratentorial craniotomies

Dexmedetomidine and its Injectable Anesthetic-Pain Management Combinations

TITLE: Recognition and Diagnosis of Sepsis in Rural or Remote Areas: A Review of Clinical and Cost-Effectiveness and Guidelines

Dexmedetomidine intravenous sedation using a patient-controlled sedation infusion pump: a case report

Dexmedetomidine In The Prevention Of Emergence Delirium In Children

Clinical effectiveness of a sedation protocol minimizing benzodiazepine infusions and favoring early dexmedetomidine: A before-after study

Use of a 2 -Agonists in Neuroanesthesia: An Overview

Original Article Dexmedetomidine inhibits epileptiform activity in rat hippocampal slices

[DOI] /j.issn China

Postoperative benefits of dexmedetomidine combined with flurbiprofen axetil after thyroid surgery

SUMMARY OF PRODUCT CHARACTERISTICS

SUMMARY OF PRODUCT CHARACTERISTICS

HEALTH TECHNOLOGY ASSESSMENT

GUIDELINES FOR ANESTHESIA AND FORMULARIES

TITLE: Dexmedetomidine for Sedation in the ICU or PICU: A Review of Cost- Effectiveness and Guidelines

Alfaxan. (alfaxalone 10 mg/ml) Intravenous injectable anesthetic for use in cats and dogs. TECHNICAL NOTES DESCRIPTION INDICATIONS

Regional and Local Anesthesia of the Wrist and Hand Aided by a Forearm Sterile Elastic Exsanguination Tourniquet - A Review

Effects of Dexmedetomidine on Serum Interleukin-6, Hemodynamic Stability, and Postoperative Pain Relief in Elderly Patients under Spinal Anesthesia

SUMMARY OF PRODUCT CHARACTERISTICS. Narcostart 1 mg/ml solution for injection for cats and dogs (NL, AT, BE, CZ, EL, HU, IS, LU, PL, SK)

Anesthetic regimens for mice, rats and guinea pigs

Dexmedetomidine use in a pediatric cardiac intensive care unit: Can we use it in infants after cardiac surgery?

Haemodynamic and anaesthetic advantages of dexmedetomidine

Over the past 10 years, there has been an increase in

Fujita et al. Journal of Intensive Care 2013, 1:15

Comparison of two doses of intranasal dexmedetomidine as premedication in children

Refinement Issues in Animal Research. Joanne Zurlo, PhD Institute for Laboratory Animal Research National Academy of Sciences

Comparison of dexmedetomidine v/s propofol used as adjuvant with combined spinal epidural anaesthesia for joint replacement surgeries

Effect of intravenous dexmedetomidine infusion on some proinflammatory cytokines, stress hormones and recovery profile in major abdominal surgery

Dexmedetomidine: its use in intensive care medicine and anaesthesia

The comparison of the effects of intravenous ketamine or dexmedetomidine infusion on spinal block with bupivacaine

COMPARATIVE STUDY OF INTRAVENOUS DEXMEDETOMIDINE PLUS INTRATHECAL BUPIVACAINE VS INTRATHECAL BUPIVACAINE ALONE FOR PROLONGATION OF SPINAL ANALGESIA

Comparison of dexmedetomidine and propofol for conscious sedation in inguinal hernia repair: A prospective, randomized, controlled trial

SOP #: Page: 1 of 6 Rodent Analgesia

UNTHSC. Institutional Animal Care and Use Committee. Title: Analgesics and Anesthesia in Laboratory Animals at UNTHSC. Document #: 035 Version #: 02

Quality of MRI pediatric sedation: Comparison between intramuscular and intravenous dexmedetomidine

Parthasarathy et al. Sri Lankan Journal of Anaesthesiology: 25(2):76-81(2017)

Transcription:

Translational Perioperative and Pain Medicine ISSN: 2330-4871 (Open Access) Review Article Dexmedetomidine induced neuroprotection: is it translational? Yunzhen Wang 1,2, Ruquan Han 2, and Zhiyi Zuo 1 1 Department of Anesthesiology, University of Virginia, Charlottesville, Virginia 22901, USA 2 Department of Anesthesiology, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, China Abstract: Dexmedetomidine is often used in anesthesia and critical care medicine practice to sedate patients. Its neuroprotective effects have been shown in various ischemic and hemorrhagic brain injury models of animals. Randomized clinical trials have indicated that dexmedetomidine can improve outcome of patients under intensive care. Clinical trials are needed to determine whether dexmedetomidine can provide neuroprotection against ischemic and hemorrhagic stroke. Key words:dexmedetomidine; ischemic stroke; neuroprotection; ICU Dexmedetomidine has become a commonly used drug in anesthesia and critical care medicine practice. The molar mass of dexmedetomidine is 200.28 g/mol with formula of C 13 H 16 N 2. The generic name of dexmedetomidine is precedex or dexdor. It is a selective agonist of -adrenergic receptor with anxiolytic, sedative and analgesic effects. It provides sedation without inhibiting respiration. Patient can be cooperative or semi-arousal under the sedation with dexmedetomidine. Its main side-effects include bradycardia and hypotension, which can be treated pharmacologically. In this review, we will discuss the potential neuroprotective effects of dexmedetomidine. Evidences from animal models It has been reported that dexmedetomidine has neuroprotective effects in animals with various insults to the brain. Dexmedetomidine attenuates central sympathetic activity and decreases anesthetic requirements. Hoffman et al. determined the effects of dexmedetomidine on neurological and histopathological outcome after incomplete cerebral ischemia in rats about 25 years ago [1]. The results show that dexmedetomidine given during brain ischemia improved neurological and histopathological outcome after incomplete ischemia in rats anesthetized with fentanyl and nitrous oxide. This effect was reversed by atipamezole, indicating that the effect is mediated by -adrenergic receptors. Improvement with dexmedetomidine was not mediated by changes in plasma glucose or other physiologic variables during ischemia. It was concluded that dexmedetomidine decreased ischemic brain injury after incomplete cerebral ischemia by decreasing sympathetic activity. In another study with using a model of focal cerebral ischemia caused by occluding the left internal carotid, anterior and middle cerebral arteries for 2 h [2], rabbits received dexmedetomidine or normal saline 10 min after the occlusion. A plasma level of dexmedetomidine was maintained at 4.0 ± 0.15 ng/ ml. The area of ischemic neuronal injury in the cortex was significantly decreased by about 47.6% in the group treated with dexmedetomidine. These results suggest that treatment with dexmedetomidine, at a dose to reduce the requirements of anesthetics by 50%, provides neuroprotection against focal cerebral ischemia. Perinatal asphyxia can lead to death and severe disability. Brain hypoxia-ischemia (HI) injury is the major pathophysiology contributing to death and severe disability after perinatal asphyxia. Ren et al. studied the effects of dexmedetomidine on seven-day old Sprague Dawley rats with left Page 15

brain HI [3]. These animals received intraperitoneal dexmedetomidine various times after brain HI. They were evaluated 7, 28 and 43 days after the brain HI. Dexmedetomidine induced neuroprotective effects when it was applied within 1 h after the brain HI. The brain cell and tissue loss as well as neurological and cognitive dysfunction evaluated from 28 days after brain HI were attenuated by dexmedetomidine. These results indicate that dexmedetomidine post-treatment induces neuroprotection against HI-induced brain injury in the neonatal rats. This protective effect may be mediated by inhibiting inflammation in the ischemic brain tissues via - adrenergic receptor activation. In addition to the protective effects against ischemia, dexmedetomidine also shows neuroprotection in rats with subarachnoid hemorrhage (SAH) [4]. Dexmedetomidine was applied in two-month old Sprague Dawley rats with SAH. The SAH model was established by perforating the junction of the right middle and anterior cerebral arteries. Animals received dexmedetomidine immediately or 2 h after SAH. They were evaluated 2 days after SAH. SAH worsened neurological functions, induced brain edema and increased blood-brain barrier permeability. These detrimental effects were reduced by dexmedetomidine post-treatment. However, the neuroprotective effects of dexmedetomidine was abolished by inhibition of extracellular signal-regulated kinase (ERK) activation. The conclusion in this study is that dexmedetomidine post-treatment induces neuroprotection to reduce SAH-induced brain injury. This effect may be mediated by activating ERK. Evidence from human studies Dexmedetomidine also shows some neuroprotective effects in human. Medications inducing sedation and analgesia are often administrated to patients ventilated mechanically to reduce anxiety and pain and to permit invasive procedures in the intensive care unit (ICU). The MENDS (maximizing efficacy of targeted sedation and reducing neurological dysfunction) randomized controlled trial was designed to determine whether dexmedetomidine reduces the duration of delirium and coma in mechanically ventilated ICU patients while providing adequate sedation as compared with lorazepam [5]. Total 106 adult medical and surgical ICU patients ventilated mechanically in 2 tertiary care centers were randomly assigned to two groups. They were sedated by dexmedetomidine or lorazepam for as long as 120 hours. Patients were assessed for delirium with using the Confusion Assessment Method for ICU patients twice daily. Patients sedated with dexmedetomidine had more coma-free or coma and delirium-free days and a lower prevalence of coma than sedation with lorazepam. More patients sedated with dexmedetomidine completed post-icu neuropsychological testing and had similar scores in those tests assessing global cognitive, motor speed, and attention functions. In those ICU patients that were managed with individualized targeted sedation, dexmedetomidine infusion led to more coma- or coma and delirium-free days than with a lorazepam infusion at the targeted level of sedation. Interestingly, it has been shown that benzodiazepines and -adrenoceptor agonists the effects of benzodiazepines and -adrenoceptor agonists on innate immunity and mortality in animals with infection may be different. Benzodiazepines impair neutrophil and macrophage functions [6, 7]. -adrenoceptor agonists increase macrophage phagocytosis but have limited effects on neutrophil functions [8, 9]. Benzodiazepines increase the mortality of animals with infection [10] while -adrenoceptor agonists improve mortality in animals with infection [11]. In a sub-analysis of the MENDS data, the authors compared the effect of dexmedetomidine with that of lorazepam on septic patients [12]. Among them, 63 patients had sepsis and 40 patients were without sepsis. Septic patients sedated with lorazapam had 3.2 more days with delirium/coma on average, 1.5 more days with delirium and more days requiring a ventilator. These protective effects of dexmedetomidine were enhanced in septic patients than patients without sepsis. Mortality at 28 days were reduced by 70% in septic patients sedated by dexmedetomidine as compared to the patients in the lorazepam group. A randomized, double-blinded, placebo-controlled trial was just published Lancet. The study determined the effectiveness of dexmedetomidine to prevent delirium in elderly patients after non-cardiac surgery [13]. Total 700 patients aged Page 16

Figure 1. Potential mechanisms for dexmedetomidine to induce neuroprotection (ERK: extracellular signal-regulated kinase; PI3K: phosphatidylinositol 3-kinase) 65 years or older were assigned to receive either placebo or dexmedetomidine (0.1 μg/kg/h). The incidence of postoperative delirium was significantly lower in the dexmedetomidine group than in the placebo group. Regarding the safety, the incidence of hypertension and tachycardia were higher with placebo than with dexmedetomidine. Thus, it was concluded that a low-dose of dexmedetomidine significantly decreased the occurrence of delirium during the first 7 days after non-cardiac surgery in elderly ICU patients. Potential mechanisms As described above, dexmedetomidine can inhibit inflammation and decrease sympathetic activity via -adrenergic receptor activation. It also can activate some protective signal pathway, such as ERK and phosphoinositide 3-kinase (PI3K) /Akt pathway, to provide neuroprotection [14]. The activation of ERK by dexmedetomidine may be via mechanisms independent of -adrenergic receptor activation [15] (Figure 1). In summary, dexmedetomidine can provide neuroprotection in animals with various insults to the brain. It appears that dexmedetomidine also improves neurological outcome in patients without primary neurological diseases. It improved neurological dysfunction, such as delirium, in mechanically ventilated patients and in elderly ICU patients after non-cardiac surgery. It also decreased mortality in septic patients. It is not known yet whether dexmedetomidine can provide neuroprotection against ischemia or hemorrhagic brain injury in human. Prospective clinical studies are needed to determine whether those effects shown in animals are translational in human. Disclosure of Funding Research in Dr. Zuo s laboratory is currently supported by grants (GM098308 and AG047472) from the National Institutes of Health, Bethesda, MD, and the Robert M. Epstein Professorship endowment, University of Virginia, Charlottesville, VA. Conflict Interests Disclosure: The authors have no conflicting interests to disclose. Corresponding Authors: Zhiyi Zuo, MD, PhD Robert M. Epstein Professor of Anesthesiology, Professor of Neurological Surgery, and Neuroscience, University of Virginia. zz3c@virginia.edu; or Ruquan Han, MD, PhD, Professor and Chair, Department of Anesthesiology, Beijing Titan Hospital, Capital University. Tele: 86-10-67096660, Fax: 86-10- 67031947, e-mail: ruquan.han@yahoo.com Page 17

Editor: Renyu Liu, MD; PhD. Associate Professor, Director of Preoperative Medicine, Department of Anesthesiology and Critical Care; Perelman School of Medicine at the University of Pennsylvania, 336 John Morgan building, 3620 Hamilton Walk, Philadelphia, PA 19104. Phone: 2157461485; FAX: 2153495078. liur@uphs.upenn.edu Additional publication details Journal short name: Transl Perioper & Pain Med Received Date: September 16, 2015 Accepted Date: Nov 11, 2016 Published Date: Nov 12, 2016 Transl Perioper & Pain Med 2016; 1(4):15-19 Citation and Copyright Citation: Wang Y, Han R, Zuo Z. Dexmedetomidine induced neuroprotection: is it translational? Transl Perioper & Pain Med 2016; 1(4): 15-19 Copyright: 2016 Wang Y., et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. References 1. Hoffman WE, Kochs E, Werner C, Thomas C, Albrecht RF. Dexmedetomidine improves neurologic outcome from incomplete ischemia in the rat. Anesthesiology. 1991;75:328-32. 2. Maier C, Steinberg GK, Sun GH, Zhi GT, Maze M. Neuroprotection by the alpha 2-adrenoreceptor agonist dexmedetomidine in a focal model of cerebral ischemia. Anesthesiology. 1993;79(2):306-12. PubMed PMID: 8102042. 3. Ren X, Ma H, Zuo Z. Dexmedetomidine Postconditioning Reduces Brain Injury after Brain Hypoxia-Ischemia in Neonatal Rats. Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology. 2016;11(2):238-47. doi: 10.1007/s11481-016-9658-9. PubMed PMID: 26932203. 4. Wang Y, Han R, Zuo Z. Dexmedetomidine post-treatment induces neuroprotection via activation of extracellular signal-regulated kinase in rats with subarachnoid haemorrhage. British journal of anaesthesia. 2016;116(3):384-92. doi: 10.1093/bja/aev549. PubMed PMID: 26865131; PubMed Central PMCID: PMC4748945. 5. Pandharipande PP, Pun BT, Herr DL, Maze M, Girard TD, Miller RR, et al. Effect of sedation with dexmedetomidine vs lorazepam on acute brain dysfunction in mechanically ventilated patients: the MENDS randomized controlled trial. Jama. 2007;298(22):2644-53. doi: 10.1001/ jama.298.22.2644. PubMed PMID: 18073360. 6. Finnerty M, Marczynski TJ, Amirault HJ, Urbancic M, Andersen BR. Benzodiazepines inhibit neutrophil chemotaxis and superoxide production in a stimulus dependent manner; PK-11195 antagonizes these effects. Immunopharmacology. 1991;22(3):185-93. PubMed PMID: 1663497. 7. Kim SN, Son SC, Lee SM, Kim CS, Yoo DG, Lee SK, et al. Midazolam inhibits proinflammatory mediators in the lipopolysaccharide-activated macrophage. Anesthesiology. 2006;105(1):105-10. PubMed PMID: 16810001. 8. Miles BA, Lafuse WP, Zwilling BS. Binding of alpha-adrenergic receptors stimulates the anti-mycobacterial activity of murine peritoneal macrophages. Journal of neuroimmunology. 1996;71(1-2):19-24. PubMed PMID: 8982098. 9. Nishina K, Akamatsu H, Mikawa K, Shiga M, Maekawa N, Obara H, et al. The effects of clonidine and dexmedetomidine on human neutrophil functions. Anesthesia and analgesia. 1999;88(2):452-8. PubMed PMID: 9972773. 10. Domingues-Junior M, Pinheiro SR, Guerra JL, Palermo-Neto J. Effects of treatment with amphetamine and diazepam on Mycobacterium bovis-induced infection in hamsters. Immunopharmacology and immunotoxicolo- Page 18

gy. 2000;22(3):555-74. doi: 10.3109/08923970009026012. PubMed PMID: 10946832. 11. Hofer S, Steppan J, Wagner T, Funke B, Lichtenstern C, Martin E, et al. Central sympatholytics prolong survival in experimental sepsis. Critical care. 2009;13(1):R11. doi: 10.1186/cc7709. PubMed PMID: 19196475; PubMed Central PMCID: PMC2688128. 12. Pandharipande PP, Sanders RD, Girard TD, Mc- Grane S, Thompson JL, Shintani AK, et al. Effect of dexmedetomidine versus lorazepam on outcome in patients with sepsis: an a priori-designed analysis of the MENDS randomized controlled trial. Critical care. 2010;14(2):R38. doi: 10.1186/cc8916. PubMed PMID: 20233428; PubMed Central PMCID: PMC2887145. 13. Su X, Meng ZT, Wu XH, Cui F, Li HL, Wang DX, et al. Dexmedetomidine for prevention of delirium in elderly patients after non-cardiac surgery: a randomised, double-blind, placebo-controlled trial. Lancet. 2016. doi: 10.1016/S0140-6736(16)30580-3. PubMed PMID: 27542303. 14. Zhu YM, Wang CC, Chen L, Qian LB, Ma LL, Yu J, Zhu MH, Wen CY, Yu LN and Yan M. Both PI3K/Akt and ERK1/2 pathways participate in the protection by dexmedetomidine against transient focal cerebral ischemia/reperfusion injury in rats. Brain Res, 2013; 1494:1-8 PubMed PMID:23219579 15.Dahmani S, Paris A, Jannier V, Hein L, Rouelle D, Scholz J, Gressens P and Mantz J. Dexmedetomidine increases hippocampal phosphorylated extracellular signal-regulated protein kinase 1 and 2 content by an alpha 2-adrenoceptor-independent mechanism: evidence for the involvement of imidazoline I1 receptors. Anesthesiology, 2008; 108 (3):457-466 PubMed PMID:18292683 Page 19