Prevalence of Genes Encoding Aminoglycoside Modifying Enzymes in Clinical Isolates of Klebsiella Pneumoniae in the Hospitals of Borujerd

Similar documents
Prevalence of Metallo-Beta-Lactamase Producing Pseudomonas aeruginosa and its antibiogram in a tertiary care centre

β-lactams resistance among Enterobacteriaceae in Morocco 1 st ICREID Addis Ababa March 2018

ESBL Producers An Increasing Problem: An Overview Of An Underrated Threat

Consequences of Antimicrobial Resistant Bacteria. Antimicrobial Resistance. Molecular Genetics of Antimicrobial Resistance. Topics to be Covered

MID 23. Antimicrobial Resistance. Consequences of Antimicrobial Resistant Bacteria. Molecular Genetics of Antimicrobial Resistance

Antimicrobial Resistance

Antimicrobial Resistance Acquisition of Foreign DNA

Comparative Assessment of b-lactamases Produced by Multidrug Resistant Bacteria

ESBL- and carbapenemase-producing microorganisms; state of the art. Laurent POIREL

RETROSPECTIVE STUDY OF GRAM NEGATIVE BACILLI ISOLATES AMONG DIFFERENT CLINICAL SAMPLES FROM A DIAGNOSTIC CENTER OF KANPUR

Presence of extended spectrum β-lactamase producing Escherichia coli in

Antimicrobial Resistance

International Journal of Pharma and Bio Sciences ANTIMICROBIAL SUSCEPTIBILITY PATTERN OF ESBL PRODUCING GRAM NEGATIVE BACILLI ABSTRACT

A retrospective analysis of urine culture results issued by the microbiology department, Teaching Hospital, Karapitiya

Prevalence of Extended Spectrum Beta- Lactamase Producers among Various Clinical Samples in a Tertiary Care Hospital: Kurnool District, India

The First Report of CMY, AAC(6')-Ib and 16S rrna Methylase Genes among Pseudomonas aeruginosa Isolates from Iran

Florida Health Care Association District 2 January 13, 2015 A.C. Burke, MA, CIC

Mechanism of antibiotic resistance

Prevalence of Extended-spectrum β-lactamase Producing Enterobacteriaceae Strains in Latvia

Intrinsic, implied and default resistance

2012 ANTIBIOGRAM. Central Zone Former DTHR Sites. Department of Pathology and Laboratory Medicine

Mili Rani Saha and Sanya Tahmina Jhora. Department of Microbiology, Sir Salimullah Medical College, Mitford, Dhaka, Bangladesh

Enterobacter aerogenes

Activity of a novel aminoglycoside, ACHN-490, against clinical isolates of Escherichia coli and Klebsiella pneumoniae from New York City

Detection of ESBL Producing Gram Negative Uropathogens and their Antibiotic Resistance Pattern from a Tertiary Care Centre, Bengaluru, India

Safe Patient Care Keeping our Residents Safe Use Standard Precautions for ALL Residents at ALL times

Antimicrobial Cycling. Donald E Low University of Toronto

Mechanisms and Pathways of AMR in the environment

ESCMID Online Lecture Library. by author

BLA-NDM-1 IN CLINICAL ISOLATES OF Acinetobacter baumannii FROM NORTH INDIA

What does multiresistance actually mean? Yohei Doi, MD, PhD University of Pittsburgh

a. 379 laboratories provided quantitative results, e.g (DD method) to 35.4% (MIC method) of all participants; see Table 2.

WHY IS THIS IMPORTANT?

PROTOCOL for serotyping and antimicrobial susceptibility testing of Salmonella test strains

2015 Antimicrobial Susceptibility Report

PCR detection of Leptospira in. stray cat and

Analysis of drug-resistant gene detection of blaoxa-like genes from Acinetobacter baumannii

Comparison of Antibiotic Resistance and Sensitivity with Reference to Ages of Elders

Antimicrobials & Resistance

Do clinical microbiology laboratory data distort the picture of antibiotic resistance in humans and domestic animals?

JOURNAL OF INTERNATIONAL ACADEMIC RESEARCH FOR MULTIDISCIPLINARY Impact Factor 1.625, ISSN: , Volume 3, Issue 4, May 2015

EXTENDED-SPECTRUM BETA-LACTAMASE (ESBL) TESTING

Antibiotic resistance a mechanistic overview Neil Woodford

Extended-Spectrum Beta-Lactamase-Producing E. Coli and Klebsiella Pneumoniae in Children at University Pediatric Clinic in Skopje

Aerobic bacterial infections in a burns unit of Sassoon General Hospital, Pune

Acinetobacter species-associated infections and their antibiotic susceptibility profiles in Malaysia.

Int.J.Curr.Microbiol.App.Sci (2018) 7(8):

Investigated of ampc in Carbapenem Resistant Gram-Negative Bacteria Isolated from Burned Patients

Evaluation of antimicrobial activity of Salmonella species from various antibiotic

Burton's Microbiology for the Health Sciences. Chapter 9. Controlling Microbial Growth in Vivo Using Antimicrobial Agents

Multi-drug resistant microorganisms

Antibiotics: mode of action and mechanisms of resistance. Slides made by Special consultant Henrik Hasman Statens Serum Institut

Origins of Resistance and Resistance Transfer: Food-Producing Animals.

Antibiotic. Antibiotic Classes, Spectrum of Activity & Antibiotic Reporting

Selective toxicity. Antimicrobial Drugs. Alexander Fleming 10/17/2016

Original Article. Ratri Hortiwakul, M.Sc.*, Pantip Chayakul, M.D.*, Natnicha Ingviya, B.Sc.**

Antibiotic Susceptibility of Common Bacterial Pathogens in Canine Urinary Tract Infections

Co-transfer of bla NDM-5 and mcr-1 by an IncX3 X4 hybrid plasmid in Escherichia coli 4

Suggestions for appropriate agents to include in routine antimicrobial susceptibility testing

Antimicrobial Resistance: Do we know everything? Dr. Sid Thakur Assistant Professor Swine Health & Production CVM, NCSU

Antimicrobial Resistance Strains

The impact of antimicrobial resistance on enteric infections in Vietnam Dr Stephen Baker

Helen Heffernan and Rosemary Woodhouse Antibiotic Reference Laboratory

Study of drug resistance pattern of principal ESBL producing urinary isolates in an urban hospital setting in Eastern India

Antimicrobial Stewardship Strategy: Antibiograms

Detection and Quantitation of the Etiologic Agents of Ventilator Associated Pneumonia in Endotracheal Tube Aspirates From Patients in Iran

Challenges Emerging resistance Fewer new drugs MRSA and other resistant pathogens are major problems

Witchcraft for Gram negatives

ESBL Positive E. coli and K. pneumoneae are Emerging as Major Pathogens for Urinary Tract Infection

Dr Vivien CHUANG Associate Consultant Infection Control Branch, Centre for Health Protection/ Infectious Disease Control and Training Center,

Project Summary. Impact of Feeding Neomycin on the Emergence of Antibiotic Resistance in E. coli O157:H7 and Commensal Organisms

Title: N-Acetylcysteine (NAC) Mediated Modulation of Bacterial Antibiotic

Detection of Inducible AmpC β-lactamase-producing Gram-Negative Bacteria in a Teaching Tertiary Care Hospital in North India

ETX0282, a Novel Oral Agent Against Multidrug-Resistant Enterobacteriaceae

Multiple drug resistance pattern in Urinary Tract Infection patients in Aligarh

Microbiology ( Bacteriology) sheet # 7

Defining Extended Spectrum b-lactamases: Implications of Minimum Inhibitory Concentration- Based Screening Versus Clavulanate Confirmation Testing

Appropriate antimicrobial therapy in HAP: What does this mean?

DR. MICHAEL A. BORG DIRECTOR OF INFECTION PREVENTION & CONTROL MATER DEI HOSPITAL - MALTA

1 INTRODUCTION OBJECTIVES OUTLINE OF THE SALM/CAMP EQAS

number Done by Corrected by Doctor Dr Hamed Al-Zoubi

Available Online at International Journal of Pharmaceutical & Biological Archives 2011; 2(5): ORIGINAL RESEARCH ARTICLE

Bacterial Pathogens in Urinary Tract Infection and Antibiotic Susceptibility Pattern from a Teaching Hospital, Bengaluru, India

Antimicrobial Susceptibility Profile of E. coli Isolates Causing Urosepsis: Single Centre Experience

Molecular characterization of carbapenemase genes in Acinetobacter baumannii in China

MICRONAUT MICRONAUT-S Detection of Resistance Mechanisms. Innovation with Integrity BMD MIC

Fighting MDR Pathogens in the ICU

group and their transferability in resistant clinical isolates of Salmonella serogroups from several hospitals of Tehran

Original Article. Suthan Srisangkaew, M.D. Malai Vorachit, D.Sc.

Int.J.Curr.Microbiol.App.Sci (2017) 6(3):

Original Article. Hossein Khalili a*, Rasool Soltani b, Sorrosh Negahban c, Alireza Abdollahi d and Keirollah Gholami e.

Protein Synthesis Inhibitors

CONTAGIOUS COMMENTS Department of Epidemiology

Susceptibility Patterns of Escherichia coli: Prevalence of Multidrug-resistant Isolates and Extended Spectrum Beta- Lactamase Phenotype

Original Article. Amin Dehghan Banadkouki 1 M.Sc., Gilda Eslami 2 Ph.D., Hengameh Zandi 2* Ph.D., Ali Dehghan Banadkouki 3 B.Sc.

Journal of Nosocomial Infection

Understanding and prevention of transmission of antibiotic resistance between bacterial populations and One Health reservoirs

RESEARCH ARTICLE ANTIBIOGRAM

Antibiotics & Resistance

Breaking the Ring. β-lactamases and the Great Arms Race. Bryce M Kayhart, PharmD, BCPS PGY2 Pharmacotherapy Resident Mayo Clinic - Rochester

Transcription:

International Journal of Medical Laboratory 2018;5(1):35-41. Original Article Prevalence of Genes Encoding Aminoglycoside Modifying Enzymes in Clinical Isolates of Klebsiella Pneumoniae in the Hospitals of Borujerd Mahsa Harir Foroush 1 M.Sc., Leili Shokoohizadeh 2* Ph.D. Mohsen Mirzaee 1 Ph.D. 1 Department of Medical Laboratory Sciences, Borujerd Branch, Islamic Azad University, Borujerd, Iran. 2 Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran. Article history Received 17 Jan 2017 Accepted 4 Dec 2017 Available online 18 Mar 2018 Key words aac (3)-IIa aac (6')- Ib Klebsiella pneumonia A B S T R A C T Background and Aims: Given the importance of aminoglycoside resistance in nosocomial and community infections caused by bacterial pathogenes such as Klebsiella pneumoniae (K. pneumoniae), the aim of this study was to determine the frequency of aac (6')- Ib and aac (3)- IIa, the genes encoding aminoglycoside modifying enzymes involved in aminoglycoside resistance. Material and Methods: A total of 100 K. pneumonia isolates were collected from hospitalized patients from April to September 2015 in Borujerd hospitals. Conventional microbiological tests were carried out to detect and confirm K. pneumonia isolates. Antibiotic susceptibility of isolates was detected by disk diffusion methods. The presence of the aac(6')- Ib and aac(3)-iia genes which encode aminoglycoside modifying enzymes was determined by polymerase chain reaction. Results: Among 100 K. pneumonia isolates, 34% showed resistance to gentamicin and 21% to amikacin. Resistance to both gentamicin and amikacin was detected in 18% of the isolates. Multi-resistance phenotypes were detected in 71% of the isolates. The aac (3)-IIa and aac(6ʹ)-ib genes were found in 71% (n=24) and 5.8% (n=2) of aminoglycoside resistant isolates, respectively. Simultaneous carriage of aac (3)-IIa and aac(6ʹ)-ib was detected in 64% (n=22) of the aminoglycoside resistant isolates. Conclusions: The results of this study showed the presence of aac (3)-IIa genes in more than 70% of the aminoglycosides resistant K. pneumoniae strains; this may be due to the transmission of this gene through mobile genetic elements that create a high risk of rapid spread of these genes in hospitals. *Corresponding Author: Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran. Tel: +98 8138276295, Fax:+98 8138276299, Email: shokoohizadeh-l@umsha.ac.ir

M. Harir Foroush et al. Introduction Nowadays, the opportunistic pathogen, Klebsiella pneumoniae (K. pneumoniae) is considered as the main bacteria involved in nosocomial infections [1]. Infections caused by K. pneumoniae including urinary tract infections, septicemia, pneumonia and intraabdominal infections in hospitalized patients are responsible for a high rate of mortality [2]. Antibiotic resistance has always been regarded as a serious problem for human health by affecting patients in hospitals around the world. [3]. Considering that K. pneumoniae causes disease in patients with a weakened immune system thereby increasing the rate of resistance to antibiotics in bacteria, it can be a serious threat for health care settings [2, 3]. Therefore, the determination of antibiotic resistance patterns in common pathogenic bacteria aimed at conducting empirical and specific therapy against a particular pathogen is important [4]. One of the most common antibiotic resistances in gram negative bacteria such as K. pneumoniae is aminoglycoside resistance [5]. Antibiotics such as streptomycin, gentamicin, tobramycin, amikacin, and kanamycin are known as the family of aminoglycoside antibiotics. All aminoglycosides inhibit protein synthesis in bacteria by binding to the 30S subunit of 16S rrna and thus show bactericidal effect [4, 5]. Production of aminoglycoside modifying enzymes (AMEs) is the most common type of resistance to aminoglycosides which results in a high level of bacterial resistance [6, 7]. The common encoding genes for aminoglycoside modifying enzymes in the Enterobacteriaceae family are aac (3)- II and aac (6')- Ib [8]. N- acetyltransferases aac (6) and aac (3) are most frequently found in clinical isolates in Iran and certain other countries [3,8-10]. Aminoglycoside 6 N-acetyltransferases of type Ib [aac(6 )-Ib] are widespread among members of the Enterobacteriaceae family including K. pneumoniae [11, 12]. There are limited studies on the AMEs in K. pneumoniae in Iran, Considering the role of K. pneumoniae in nosocomial infections as well as the importance of identifying resistance to aminoglycosides particularly resistances caused by mobile genetic elements, the aim of this study was to determine the two genes acc (6')- Ib and acc(3)- II in clinical isolates of K. pneumoniae from patients admitted to hospitals in the city of Borujerd in the west of Iran. Materials and Methods K. pneumoniae isolates In a cross-sectional study, a total of 100 K. pneumoniae strains were isolated from clinical samples (blood, wound, urine and trachea) of patients in the hospitals of Borujerd from April to September 2015. K. pneumonia isolates were identified and confirmed by conventional microbiological tests: Gram staining and standard biochemical tests such as lactose fermentation, indole test, motility, citrate and urease test, lysine decarboxylase and Methyl Red Voges Proskauer (MR-VP). Antimicrobial susceptibility testing The antimicrobial susceptibility of K. pneumoniae International Journal of Medical Laboratory 2018;5(1): 35-41. 36

PREVALENCE OF GENES ENCODING AMES IN K. PNEUMONIAE isolates to gentamicin (10 μg), amikacin (30 μg), ampicillin (10 μg), cephalothin (30 μg) aztreonam (30 μg) ceftriaxone (30 μg), chloramphenicol (30 μg), ciprofloxacin (5 μg), imipenem (10 μg), and nalidixic acid (30 μg) disks (Rosco company, Denmark) was determined by disk diffusion method, according to clinical and laboratory standards institute guidelines (9). K. pneumoniae ATCC 13883 was used as the control strain for disk susceptibility testing. Detection of aac(6')-ib, aac(3)-ii genes Genomic DNA was extracted from all aminoglycoside resistance K. pneumoniae isolates using a DNA extraction kit (Cinapure DNA, CinaClon, Iran) according to the manufacturer s instructions. Amplification of the genes encoding aminoglcoside modifying enzymes, aac(6')-ib, and aac(3)-ii, was performed using specific primers (Table 1) by polymerase chain reaction (PCR). The PCR mixture was prepared in a final volume of 25 μl consisting of template DNA (1 μl), 0.25 μm of the respective primers [13], 2.5 μl PCR buffer, 0.5 μm deoxynucleotide triphosphates, 0.75 μm of MgCl2, 0.25 U Taq DNA polymerase (Cinna Gene, Tehran, Iran), and 19.5 dd H 2O. A thermocycler (PEQ STAR, Germany) was programmed with the following parameters: after an initial denaturation for 5 min. at 94 C, 30 cycles of amplification were performed with denaturation at 94 C for 30 sec, annealing at 55 C for 30 sec, and DNA extension at 72 C for 30 sec, followed by a final extension at 72 C for 5 min. Then, PCR products were visualized by electrophoresis on 1% agarose gel. This study was approved by Ethics Committee of Hamadan university of medical sciences, Hamadan, Iran. Results The results of this study showed a significant difference between the types of the clinical samples (urine) as regards resistant to aminoglycosides. A total of 79% (27 isolates) of aminoglycosides resistant isolates were isolated from urine and other clinical samples including trachea 11.7% (4 isolates), wounds 5.8% (2 isolates) and blood 2.9% (1 isolate). Based on the results of antibacterial susceptibility testing, out of 100 samples of K. pneumoniae, 34% of the isolates were resistant to gentamicin and 21% to amikacin. Moreover, resistance to both gentamicin and amikacin was detected in 18% of the isolates. According to the results of the susceptibility tests, of the 34 gentamicin resistant isolates, 94% (32 isolates) were resistant to ampicillin and 51% to amikacin and ceftriaxone. The results of the antibiogram for the 34 gentamicin resisting isolates are shown in Figure 1. The amplification of aminoglycoside resistant genes by PCR showed that 71% (n=24) and 5.8% (n=2) of the aminoglycoside resistant strains harbored the aac (3)-IIa and aac (6ʹ)-Ib genes; simultaneous harboring of the aac (3)- IIa and aac (6ʹ) Ib genes was found in 64% (n=22) of the aminoglycoside resistant isolates (Fig. 2). In this study we could also detect the simultaneous presence of the aac (6ʹ)- Ib and aac (3)- IIa genes in one PCR reaction (duplex PCR). 37 International Journal of Medical Laboratory 2018;5(1):35-41.

M. Harir Foroush et al. Table 1. Primer sequences of aac (6')-Ib and aac (3)-II Gene aac (6')-Ib aac (6')-Ib aac (3)-II aac (3)-II Antibiotics resistance (%) Primers Sequences: (5-ʹ3ʹ) F: CCGACACTTGCTGACGTACAG R: TGACGGACTCTTGCGCTAAA F: TGAAACGCTGACGGAGCCT R: GTCGAACAGGTAGCACTGAG Fragment 61 bp 370 bp Fig. 1. frequency (%) resistance to antibiotics among gentamicin resistant K. pneumoniae strains. AMP= ampicillin; CEP= cephalothin; CRO= ceftriaxone; CIP= ciprofloxacin; TET= tetracycline; AZT= aztronam; CHL= chloramphenicol; NI= nitrofurantoin; IMP= imipenem Discussion Fig. 2. Agarose gel electrophoresis of amplified DNA fragments of aac (6')-Ib and aac (3)-II by duplex PCR from reference strains and clinical isolates of K. pneumoniae. Wells: M, 50 bp Plus DNA ladder; 5 and 12, as negative control; 1, as positive control; 4, 6, 7, 8, 9, 10, 11, clinical isolates of K. pneumoniae Emergence of resistant strains to aminoglycosides can be a serious threat against public health in hospitals and society, causing difficulties for medical treatment and imposing additional costs on the healthcare system. In this study, antibiotic resistance patterns and the occurrence frequency of the aminoglycoside resistance genes aac (6')-Ib and aac (3)-IIa International Journal of Medical Laboratory 2018;5(1): 35-41. 38

PREVALENCE OF GENES ENCODING AMES IN K. PNEUMONIAE in K. pneumoniae strains isolated from hospitalized patients in Borujerd, in the west of Iran, was investigated by PCR. These genes encode aminoglycoside modifying enzymes for gentamicin and amikacin. In fact, acetyltransferase enzymes of gentamicin and amikacin are encoded by these genes [10]. Different results concerning resistance to aminoglycosides have been published in Iran; however, few studies have been carried out on the prevalence of aminoglycoside resistant genes in K. pneumoniae [11, 12, 14, 15]. Linderman et al. from Norway reported that 90% of K. pneumoniae strains are resistant to aminoglycosides [16]. The results of our research indicated a relatively high resistance (34%) to gentamicin. Resistance to both gentamicin and amikacin was observed in 18% of the cases. Antibiotics that inhibit cell wall synthesis increase the transfer of aminoglycosides into bacteria cells, hence the combination of cell wall synthesisinhibitor antibiotics such as beta-lactams and aminoglycosides can be used to treat infections caused by K. pneumonia [7, 12, 14]. In recent years, strains of bacteria resistant to beta-lactams and aminoglycoside antibiotics, especially in hospitals, have increased [17]. In this study, over 90% of the isolates resistant to gentamicin were also resistant to ampicillin. These results suggest that combining these two classes of antibiotics is not effective in treating resistant strains of K. pneumonia while the imipenem showed the highest activity against the most resistant strains to aminoglycosides. In contrast to our results, Peerayeh, et al. reported a higher prevalence (42.5%) of aac (6')- Ib genes among K. pneuominea isolates in Tehran s hospitals. They also detected the aac (3)- II gene in 35.1% of these isolates [18]. In addition, Lindermann reported a higher frequency for the aac (3)-II gene found in 79.3% of K. pneumonia isolates in comparison with the aac (6')- Ib gene (found in 37.9% of the isolates) [16]. In 2015, Liang et al. studied aac (6')- Ib in K. pneumoniae isolates and found 19% of the isolates containing this gene [19]. In a study, Almaghrabi et al., reported resistance to gentamicin and amikacin in 40%, and 16% of K. pneumoniae isolates, respectively. In the United States' hospitals, 98% of amioglycoside resistant strains possessed AMEs, including aac (6ʹ)-Ib. These results have shown that the location of sampling may affect the distribution of aminoglycoside genes among K. pneomoniae isolates [20]. Other isolates with negative PCR results for AME genes have probably become resistant to aminoglycosides through other resistance mechanisms such as the reduction of uptake or change in the ribosome binding site [18, 21]. Conclusions The results of this study indicate moderate resistance to aminoglycosides in comparison with the results achieved by other researchers. Furthermore, the presence of the aac (6')- Ib and aac (3)-IIa genes was observed in more than 50% of nosocomial K. pneumoniae strains resistant to aminoglycosides. This may be due to the transmission of this gene through mobile genetic elements such as plasmids and transposones that create a high risk of rapid 39 International Journal of Medical Laboratory 2018;5(1):35-41.

M. Harir Foroush et al. spread of these genes among K. pneunmoniae isolates in hospitals. Conflict of Interest The authors declare no conflict of interest. Acknowledgement We would like to thank the staff of microbiology laboratories in the hospitals of Brojured, Iran. References [1]. Paczosa MK, Mecsas J. Klebsiella pneumoniae: going on the offense with a strong defense. Microbiol Mol Biol Rev. 2016; 80(3): 629-61. [2]. Rashid T, Ebringer A. Ankylosing spondylitis is linked to Klebsiella: the evidence. Clin Rheumatol. 2007; 26 (6): 858-64. [3]. Kidd TJ, Mills G, Sá Pessoa J, Dumigan A, Frank CG, Insua JL, et al. Klebsiella pneumoniae antibiotic resistance mechanism that subdues host defences and promotes virulence. EMBO Mol Med. 2017; 9(4): 430-47. [4]. Yan JJ, Wu JJ, Ko WC, Tsai SH, Chuang CL, Wu HM, et al. Plasmid-mediated 16S rrna methylases conferring high-level aminoglycoside resistance in Escherichia coli and Klebsiella pneumoniae isolates from two Taiwanese hospitals. J Antimicrob Chemother. 2004; 54 (6): 1007-1012. [5]. Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R, et al,. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis. 2010; 10(9): 597-602. [6]. Sirot D, Sirot J, Labia R, Morand A, Courvalin P, Darfeuille-Michaud A, et al,. Transferable resistance to third-generation cephalosporins in clinical isolates of Klebsiella pneumoniae: identification of CTX-1, a novel β-lactamase. J Antimicrob Chemother. 1987; 20(3): 323-34. [7]. Robicsek A, Strahilevitz J, Jacoby GA, Macielag M, Abbanat D, Park CH, et al. Fluoroquinolone- modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat Med. 2006; 12(1): 83-8. [8]. Machado E, Coque TM, Cantón R, Baquero F, Sousa JC, Peixe L. Portuguese Resistance Study Group. Dissemination in Portugal of CTX- M- 15, OXA-1-, and TEM-1-producing Enterobacteriaceae strains containing the aac (6 )-Ib-cr gene, which encodes an aminoglycoside-and fluoroquinolone-modifying enzyme. Antimicrob Agents Chemother. 2006; 50 (9): 3220-221. [9]. Clinical and Laboratory Standard Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically. Approved Standard M07-A9, Clinical and Laboratory Standard Institute, Wayne, Pa: 2012. [10]. Ho PL, Leung LM, Chow KH, Lai EL, Lo WU, Ng TK. Prevalence of aminoglycoside modifying enzyme and 16S ribosomal RNA methylase genes among aminoglycoside-resistant Escherichia coli isolates. J Microbiol Immunol Infect. 2014; 49(1): 123-26. [11]. Lari AR, Azimi L, Rahbar M, Fallah F, Alaghehbandan R. Phenotypic detection of Klebsiella pneumoniae carbapenemase among burns patients: first report from Iran. Burns 2013; 39(1): 174-76. [12]. Aminzadeh Z, Kashi MS, Shabani M. Bacteriuria by extended-spectrum β-lactamaseproducing escherichia coli and Klebsiella pneumoniae. Iran J Kidney Dis. 2008; 2(1): 197-200. [13]. Boehme S, Werner G, Klare I, Reissbrodt R, Witte W. Occurrence of antibiotic-resistant enterobacteria in agricultural foodstuffs. Mol Nutr Food Res. 2004; 48(7): 522-31. [14]. Feizabadi MM, Mahamadi-Yeganeh S, Mirsalehian A, Mirafshar SM, Mahboobi M, Nili F, Yadegarinia D. Genetic characterization of ESBL producing strains of Klebsiella pneumoniae from Tehran hospitals. J Infect Dev Ctries. 2010; 4(10): 609-15. [15]. Soleimani N, Aganj M, Ali L, Shokoohizadeh L, Sakinc T. Frequency distribution of genes encoding aminoglycoside modifying enzymes in uropathogenic E. coli isolated from Iranian hospital. BMC Res Notes. 2014; 7(1): 842. [16]. Lindemann PC, Risberg K, Wiker HG, Mylvaganam H. Aminoglycoside resistance in clinical Escherichia coli and Klebsiella pneumoniae isolates from Western Norway. Apmis. 2012; 120(6): 495-502. [17]. Haidar G, Alkroud A, Cheng S, Churilla TM, Churilla BM, Shields RK, et al,. Association between the presence of aminoglycosidemodifying enzymes and in vitro activity of gentamicin, tobramycin, amikacin, and plazomicin against Klebsiella pneumoniae carbapenemase-and extended- spectrum-β-lactamase- producing Enterobacter species. Antimicrob Agents Chemothe. 2016; 60(9): 5208-214. International Journal of Medical Laboratory 2018;5(1): 35-41. 40

PREVALENCE OF GENES ENCODING AMES IN K. PNEUMONIAE [18]. Peerayeh SN, Rostami E, Siadat SD, Derakhshan S. High rate of aminoglycoside resistance in CTX-M-15 producing Klebsiella pneumoniae isolates in Tehran, Iran. Lab Med. 2014; 45(3): 231-37. [19]. Liang C, Xing B, Yang X, Fu Y, Feng Y, Zhang Y. Molecular epidemiology of aminoglycosides resistance on Klebsiella pneumonia in a hospital in China. Int J Clin Exp Med. 2015; 8(1): 1381-385. [20]. Almaghrabi R, Clancy CJ, Doi Y, Hao B, Chen L, Shields RK, et al. Carbapenem-resistant Klebsiella pneumoniae strains exhibit diversity in aminoglycoside-modifying enzymes, which exert differing effects on plazomicin and other agents. Antimicrob Agents Chemother. 2014; 58(8): 4443-451. [21]. El-Badawy MF, Tawakol WM, El-Far SW, Maghrabi IA, Al-Ghamdi SA, Mansy MS, et al,. Molecular Identification of Aminoglycoside- Modifying Enzymes and Plasmid-Mediated Quinolone Resistance Genes among Klebsiella pneumoniae Clinical Isolates Recovered from Egyptian Patients. Int J microbiol. 2017; 2017: 8050432. 41 International Journal of Medical Laboratory 2018;5(1):35-41.