Active sensing. Ehud Ahissar

Size: px
Start display at page:

Download "Active sensing. Ehud Ahissar"

Transcription

1 Active sensing Ehud Ahissar 1

2 Active sensing Passive vs active sensing (touch) Comparison across senses Basic coding principles Perceptual loops Sensation-targeted motor control Proprioception Controlled variables Active vibrissal touch: encoding and recoding 2

3 Eye movements during fixation 3

4 sensory encoding: What receptors tell the brain Sensory organs consist of receptor arrays: somatosensation audition vision ~200 µm Finger pad 10 µm cochlea 10 µm retina Spatial organization => Spatial coding ( which receptors are activated ) Movements => Temporal coding ( when are receptors activated ) 4

5 Temporal coding in action 5

6 Coding space by time 1. Spatial frequency 2. Spatial phase 6

7 Touch: Temporal encoding of spatial features Darian-Smith & Oke, J Physiol, 1980 anesth. monkey, MR fibers 7

8 RA fiber Vel - constant f = SF * V dt = dx / V 8

9 SF Vel SA fiber 9

10 SF Vel RA fiber V1 V2 V3 G1 G2 G3 10

11 SF Vel PC fiber 11

12 Coding ranges 12

13 Temporal filtering (by intrinsic factors) eye K P M W X Y whisker Frequency (Hz) Frequency (Hz) finger SA RA PC Frequency (Hz)

14 Coding space by time 1. Spatial frequency 2. Spatial phase 14

15 Vision: Temporal encoding due to eye movement space Veye RF(1) RF(2) space retinal outputs 1 2 time 15

16 Vision: Temporal encoding due to eye movement x space Veye RF(1) RF(2) space retinal outputs 1 2 t time 16

17 Vision: Temporal encoding due to eye movement x space Veye RF(1) RF(2) space retinal outputs 1 2 t time 17

18 Vision: Temporal encoding due to eye movement x space Veye RF(1) RF(2) space retinal outputs 1 2 t time 18

19 Vision: Temporal encoding due to eye movement x space Veye RF(1) RF(2) space retinal outputs 1 2 t time 19

20 Spatial vs temporal coding Spatial Temporal faster better resolution scanning allows sensing in between receptors 20

21 Passive vs Active sensing of stationary objects Passive Active threshold low high accuracy low high Systems involved sensory Sensory + motor coding spatial Spatial + temporal Processing speed fast slow Used in detection Exploration Localization Identification 21

22 Central processing of touch where touch begins? Text book: at the receptors 22

23 Sensory-motor loops of the vibrissal system Primary Sensory Cortex Secondary Cortex Primary Motor Cortex Zona Incerta VPM-dm VPM-vl Thalamus POm - VL Thalamic Nuclei Sensory extralemniscal Cerebellar/Olivary Red Nucleus Pontine Reticular Nucleus Superior Colliculus Brainstem Reticular Formation Motor Trigeminal Nuclei Brainstem Loop + Facial Nucleus Trigeminal Ganglion Vibrissae 23

24 Sensory-motor loops of the vibrissal system Cortex E D C Identification ( what ) Localization ( where ) B Whisking A m a The old view Thalamus WT T W Brainstem WT T W 24

25 Sensory-motor loops of the vibrissal system Primary Sensory Cortex Secondary Cortex Primary Motor Cortex Zona Incerta VPM-dm VPM-vl Thalamus POm - VL Thalamic Nuclei Sensory extralemniscal Cerebellar/Olivary Red Nucleus Pontine Reticular Nucleus Superior Colliculus Brainstem Reticular Formation Motor Trigeminal Nuclei Brainstem Loop + Facial Nucleus Trigeminal Ganglion Vibrissae 25

26 Cortex E D C Identification ( what ) Localization ( where ) B Whisking A m a Thalamus WT T W Brainstem WT T W 26

27 Sensory-motor loops of the vibrissal system E D C B A m a WT T W WT T W 27

28 Central processing of touch where touch begins? Text book: at the receptors Active touch does not begin at the receptors Sensor motion determines the interaction between the receptors and external objects 28

29 Break?

30 Motor control Closed loops Proprioceptive feedback Reflexes tool for probing loop function Controlled variables motor vs sensory 30

31 Motor control Closed loops Proprioceptive feedback Reflexes tool for probing loop function Controlled variables motor vs sensory 31

32 Excitation Contraction Coupling Phase 1: Firing of Motor Neuron Phase 2: Release of Neurotransmitter 32

33 Excitation Contraction Coupling Phase 1: Firing of Motor Neuron Phase 2: Release of Neurotransmitter Phase 3: Muscle contraction 33

34 Open-loop system Information flows in one direction (from neurons to muscles 34

35 Open-loop system Information flows in one direction (from neurons to muscles Closed-loop system Information flows in a closed loop: from neurons to muscles and from muscles to neurons What kind of information? 35

36 Closed-loop system The direct feedback from muscles and joints is mediated by proprioceptive signals Proprioceptive receptor types Name: Muscle spindle receptors Golgi tendon organs Joint receptors Sensitive to: muscle length muscle tension Flexion, extension 36

37 Proprioceptive receptor types Name: Muscle spindle receptors Golgi tendon organs Joint receptors Sensitive to: muscle length muscle tension Flexion, extension Location: Fleshy part of the muscle Between muscle and tendon Joint capsule Parallel to muscle fibers Serial to muscle fibers 37 Between bones

38 Motor control Closed loops Proprioceptive feedback Reflexes tool for probing loop function Controlled variables motor vs sensory 38

39 What proprioceptors encode? 39

40 Proprioceptive receptor types Name: Muscle spindle receptors Golgi tendon organs Joint receptors Sensitive to: muscle length muscle tension Flexion, extension From Arthur Prochazka, University of Alberta 40

41 Proprioceptive receptor types Name: Muscle spindle receptors Golgi tendon organs Joint receptors Sensitive to: muscle length muscle tension Flexion, extension Encode: force f = k 1 F 41

42 Proprioceptive receptor types Name: Muscle spindle receptors Golgi tendon organs Joint receptors Sensitive to: muscle length muscle tension Flexion, extension Encode: Length + velocity f = k 1 L + k 2 V 0.6 force f = k 1 F angle f = k 1 θ 42

43 Proprioceptive receptor types Name: Muscle spindle receptors Golgi tendon organs Joint receptors Sensitive to: muscle length muscle tension Flexion, extension Encode: Length + velocity f = k 1 L + k 2 V 0.6 force f = k 1 F angle f = k 1 θ θ θ θ 43

44 PID control Proportional (to the controlled variable) Integral (of the controlled variable) Derivative (of the controlled variable) Present Past Future θ θ θ 44

45 Negative feedback loop Characteristic: The effect of a perturbation is in the opposite direction Requirement: The cumulative sign along the loop is negative Function: Can keep stable fixed points 45

46 Positive feedback loop Characteristic: The effect of a perturbation is in the same direction Requirement: The cumulative sign along the loop is positive Function: amplifies perturbations + 46

47 Motor control Closed loops Proprioceptive feedback Reflexes tool for probing loop function Controlled variables motor vs sensory 47

48 The stretch reflex probes the control function of muscle spindles 48

49 Is the loop positive or negative? The stroke stretches the muscle As a result the muscle contracts The result opposes the perturbation => negative FB loop 49

50 the anatomical loop Muscle spindle excites the motor neuron Motor neuron excites muscle fibers Muscle contraction suppresses spindle response 50

51 Proprioceptive receptor types Name: Muscle spindle receptors Golgi tendon organs Joint receptors Sensitive to: muscle length muscle tension Flexion, extension Encode: force f = k 1 F Why proprioceptors fire at rest? And why aren t we aware of it? 51

52 What about the flexor muscles? Positive or negative loop? What is the underlying circuit? Take it as homework may appear in the exam 52

53 Pain reflex Positive or negative? What is the underlying 53 circuit? Same

54 Motor control Closed loops Proprioceptive feedback Reflexes tool for probing loop function Controlled variables motor vs sensory 54

55 Break?

56 Sensory-motor loops of the vibrissal system Primary Sensory Cortex Secondary Cortex Primary Motor Cortex Zona Incerta VPM-dm VPM-vl Thalamus POm - VL Thalamic Nuclei Sensory extralemniscal Cerebellar/Olivary Red Nucleus Pontine Reticular Nucleus Superior Colliculus Brainstem Reticular Formation Motor Trigeminal Nuclei Brainstem Loop + Facial Nucleus Trigeminal Ganglion Vibrissae 56

57 Basic principles of closed-loop control 57

58 Set point - + f Vd Vs Vm=f(-Vs) Vs=g(Vm) Vs Vm V s0 V m0 Vm V 58

59 Set point - + f Vd Vs Vm=f(Vd-Vs) Vs=g(Vm) Vs Vm V s0 Vsd V md V m0 Vm V 59

60 Direct control without direct connection - + f Vd Vs Vm=f(Vd-Vs) Vs=g(Vm) Vs Vm V s0 Vsd V md V m0 Vm V 60

61 Nested loops + - f f Vd Vs Vm=f(Vd-Vs) Vs=g(Vm) Vs Vm V s0 Vsd V md V m0 Vm V 61

62 Parallel loops + - f 2 Vs Vm2=f(Vd-Vs)Vs=g(Vm2) - + f Vm2 V s0 Vsd V md V m0 Vm2 Vs Vm1 Vs V s0 Vsd Vm1=f(Vd-Vs)Vs=g(Vm1) V V md V m0 Vm1 62

63 Parallel loops + - f 2 Xs Xm=f(Xd-Xs) Xs=g(Xm) - + f Xm X s0 Xsd X md X m0 Xm Xs Vs Vm Vs Vm=f(Vd-Vs) Vs=g(Vm) V s0 Vsd V V md V m0 Vm 63

64 Closed loops in active sensing The controlled variables can be f 2 + f Motor (Xm) (velocity, amplitude, duration, direction, ) Sensory (Xs) (Intensity, phase, ) Object (via Xm Xs relationships) (location, SF, identity, ) Xs Vs Vm Xm V 64

65 Sensory-motor loops of the vibrissal system Primary Sensory Cortex Secondary Cortex Primary Motor Cortex Zona Incerta VPM-dm VPM-vl Thalamus POm - VL Thalamic Nuclei Sensory extralemniscal Cerebellar/Olivary Red Nucleus Pontine Reticular Nucleus Superior Colliculus Brainstem Reticular Formation Motor Trigeminal Nuclei Brainstem Loop + Facial Nucleus Trigeminal Ganglion Vibrissae 66

66 Sensory-motor loops of the vibrissal system Primary Sensory Cortex Secondary Cortex Primary Motor Cortex Zona Incerta VPM-dm VPM-vl Thalamus POm - VL Thalamic Nuclei Sensory extralemniscal Cerebellar/Olivary Red Nucleus Pontine Reticular Nucleus Superior Colliculus Brainstem Reticular Formation Motor Trigeminal Nuclei Brainstem Loop + Facial Nucleus Trigeminal Ganglion Vibrissae 67

67 Sensory-motor loops of the vibrissal system Primary Sensory Cortex Secondary Cortex Primary Motor Cortex Zona Incerta VPM-dm VPM-vl Thalamus POm - VL Thalamic Nuclei Sensory extralemniscal Cerebellar/Olivary Red Nucleus Pontine Reticular Nucleus Superior Colliculus Brainstem Reticular Formation Motor Trigeminal Nuclei Brainstem Loop + Facial Nucleus Trigeminal Ganglion Vibrissae 68

68 Sensory-motor loops of the vibrissal system Primary Sensory Cortex Secondary Cortex Primary Motor Cortex Zona Incerta VPM-dm VPM-vl Thalamus POm - VL Thalamic Nuclei Sensory extralemniscal Cerebellar/Olivary Red Nucleus Pontine Reticular Nucleus Superior Colliculus Brainstem Reticular Formation Motor Trigeminal Nuclei Brainstem Loop + Facial Nucleus Trigeminal Ganglion Vibrissae 69

69 Active sensing in the vibrissal system 70

70 Sensory signal conduction The vibrissal system 71

71 whisker Sensory signal conduction The vibrissal system Meisner Merkel Ruffini Lanceolate free endings 72

72 73

73 Sensory-motor loops of the vibrissal system Primary Sensory Cortex Secondary Cortex Primary Motor Cortex Zona Incerta VPM-dm VPM-vl Thalamus POm - VL Thalamic Nuclei Sensory extralemniscal Cerebellar/Olivary Red Nucleus Pontine Reticular Nucleus Superior Colliculus Brainstem Reticular Formation Motor Trigeminal Nuclei Brainstem Loop + Facial Nucleus Trigeminal Ganglion Vibrissae 74

74 Motor control of whiskers Intrinsic muscles 75 Dorfl J, 1982, J Anat 135:

75 Follicle as a motor-sensory junction Motor signals move the follicle and whisker Follicle receptors report back details of self motion = proprioception Plus perturbations of this motion caused by the external world Dorfl J, 1985, J Anat 142:

76 Motor control of whiskers Intrinsic muscles 78 Dorfl J, 1982, J Anat 135:

77 Vibrissal proprioception Each follicle contains ~2000 receptors About 20% of them convey pure proprioceptive information 79

78 Vibrissal system Skeletal system Proprioceptive loop Proprioceptive loop 80

79 Whiskers come with different muscle sizes Intrinsic muscles 0.5 mm 81 Dorfl J, 1982, J Anat 135:

80 Whisking behavior reflections of control loops 82

81 Perception of external objects Object localization What signals must the brain process in order to infer a location of an external object in space? Reafferent + exafferent signals 86

82 What the whiskers tell the rat brain Reafference: Their own movement ( Whisking ) Exafference: Touch 88

83 What the whiskers tell the rat brain Whisking space Whisker position vs. time time 89

84 What the whiskers tell the rat brain Whisking space Whisker position vs. time time 90

85 What the whiskers tell the rat brain Whisking space Whisker position vs. time time 91

86 What the whiskers tell the rat brain Whisking space Whisker position vs. time time 92

87 What the whiskers tell the rat brain Whisking space Whisker position vs. time time 93

88 What the whiskers tell the rat brain Whisking space Whisker position vs. time time 94

89 What the whiskers tell the rat brain Whisking space Whisker position vs. time time 95

90 What the whiskers tell the rat brain Whisking space Whisker position vs. time time 96

91 What the whiskers tell the rat brain Whisking space Whisker position vs. time time 97

92 What the whiskers tell the rat brain Whisking space Whisker position vs. time time 98

93 What the whiskers tell the rat brain Whisking space Whisker position vs. time time 99

94 What the whiskers tell the rat brain Reafference: Their own movement ( Whisking ) Exafference: Touch 100

95 What the whiskers tell the rat brain Touch space Whisker position vs. time time 101

96 What the whiskers tell the rat brain Touch space Whisker position vs. time time 102

97 What the whiskers tell the rat brain Touch space Whisker position vs. time time 103

98 What the whiskers tell the rat brain Touch space Whisker position vs. time time 104

99 What the whiskers tell the rat brain Touch space Whisker position vs. time time 105

100 What the whiskers tell the rat brain Touch space Whisker position vs. time time 106

101 What the whiskers tell the rat brain Touch space Whisker position vs. time time 107

102 What the whiskers tell the rat brain Touch space Whisker position vs. time time 108

103 What the whiskers tell the rat brain Touch space Whisker position vs. time time 109

104 What the whiskers tell the rat brain Touch space Whisker position vs. time time 110

105 What the whiskers tell the rat brain Touch space Whisker position vs. time time 111

106 Whisking: What the whiskers tell the rat brain How can the brain use this information? space Whisker position vs. time time Touch: contact with object space Whisker position vs. time time 112

107 Whisking: What the whiskers tell the rat brain How can the brain use this information? space? Whisker position vs. time time Touch: contact with object space? Whisker position vs. time time 113

108 How can the brain extract the location of the object Whisking: space Whisker position vs. time time Touch: contact with object 114

109 How can the brain extract the location of the object Whisking: space Whisker position vs. time time Touch: contact with object 115

110 sensory encoding: What receptors tell the brain Sensory organs consist of receptor arrays: somatosensation audition vision ~200 µm Finger pad 10 µm cochlea 10 µm retina Spatial organization => Spatial coding ( which receptors are activated ) Movements => Temporal coding ( when are receptors activated ) 116

111 Orthogonal coding of object location Vertical object position is encoded by space Horizontal object position is encoded by time Radial object position is encoded by rate 117

112 Active sensing The End 118

Fast Feedback in Active Sensing: Touch-Induced Changes to Whisker-Object Interaction

Fast Feedback in Active Sensing: Touch-Induced Changes to Whisker-Object Interaction : Touch-Induced Changes to Whisker-Object Interaction Dudi Deutsch 1, Maciej Pietr 1{, Per Magne Knutsen 1,2, Ehud Ahissar 1 *, Elad Schneidman 1 * 1 Department of Neurobiology, The Weizmann Institute

More information

A night in the life of a rat: vibrissal mechanics and tactile exploration

A night in the life of a rat: vibrissal mechanics and tactile exploration Ann. N.Y. Acad. Sci. ISSN 0077-8923 ANNALS OF THE NEW YORK ACADEMY OF SCIENCES Issue: New Perspectives on Neurobehavioral Evolution A night in the life of a rat: vibrissal mechanics and tactile exploration

More information

Department of Physics, University of California at San Diego, 9500 Gilman Drive 0374, La Jolla, California 92093, USA 2

Department of Physics, University of California at San Diego, 9500 Gilman Drive 0374, La Jolla, California 92093, USA 2 Active sensation: insights from the rodent vibrissa sensorimotor system David Kleinfeld 1, Ehud Ahissar 2 and Mathew E Diamond 3 Rats sweep their vibrissae through space to locate objects in their immediate

More information

Embodied Information Processing: Vibrissa Mechanics and Texture Features Shape Micromotions in Actively Sensing Rats

Embodied Information Processing: Vibrissa Mechanics and Texture Features Shape Micromotions in Actively Sensing Rats Article Embodied Information Processing: Vibrissa Mechanics and Texture Features Shape Micromotions in Actively Sensing Rats Jason T. Ritt, 1 Mark L. Andermann, 2 and Christopher I. Moore 1, * 1 McGovern

More information

We recommend you cite the published version. The publisher s URL is

We recommend you cite the published version. The publisher s URL is Prescott, T., Pearson, M., Mitchinson, B., Sullivan, J. and Pipe, A. (29) Whisking with robots: From rat vibrissae to biomimetic technology for active touch. IEEE Robotics and Automation Magazine, 16 (3).

More information

ELSEVIER SECOND PROOF

ELSEVIER SECOND PROOF NRSC: 1351 Vibrissa Movement, Sensation and Sensorimotor Control 1 a5 s5 p5 p1 s1 p15 Vibrissa Movement, Sensation and Sensorimotor Control D Kleinfeld, University of California, San Diego, La Jolla, CA,

More information

Mechanics 2. Impulse and Momentum MEI, 17/06/05 1/10. Chapter Assessment

Mechanics 2. Impulse and Momentum MEI, 17/06/05 1/10. Chapter Assessment Chapter Assessment Mechanics 2 Impulse and Momentum 1. Two cars are being driven on a level skid pan on which resistances to motion, acceleration and braking may be all neglected. Car A, of mass 1200 kg,

More information

Pre-natal construction of neural circuits (the highways are genetically specified):

Pre-natal construction of neural circuits (the highways are genetically specified): Modification of Brain Circuits as a Result of Experience Chapter 24, Purves et al. 4 th Ed. Pre-natal construction of neural circuits (the highways are genetically specified): (1/6/2010) Mona Buhusi Postnatal

More information

A SINGLE VIBRISSAL COLUMN IN THE FIRST SOMATOSENSORY CORTEX OF THE MOUSE DEMONSTRATED WITH 2-DEOXYGLUCOSE

A SINGLE VIBRISSAL COLUMN IN THE FIRST SOMATOSENSORY CORTEX OF THE MOUSE DEMONSTRATED WITH 2-DEOXYGLUCOSE ACTA NEUROBIOL. EXP. 1984, 44: 83-88 Short communication A SINGLE VIBRISSAL COLUMN IN THE FIRST SOMATOSENSORY CORTEX OF THE MOUSE DEMONSTRATED WITH 2-DEOXYGLUCOSE J. CHMIELOWSKA and M. KOSSUT Department

More information

F.L. Andr6s. Rua Tristao Vaz No Esq., 1400 Lisboa, Portugal

F.L. Andr6s. Rua Tristao Vaz No Esq., 1400 Lisboa, Portugal Supranumerary Barrels Develop in the Somatosensory Cortex of Mice, After the Implantation of the Vibrissal Follicle Parts Containing Large Numbers of Receptors F.L. Andr6s Rua Tristao Vaz No. 37 1 Esq.,

More information

THE PRETRIGEMINAL CAT AS AN INSTRUMENT FOR INVESTIGATION OF THE OCULAR FIXATION REFLEX

THE PRETRIGEMINAL CAT AS AN INSTRUMENT FOR INVESTIGATION OF THE OCULAR FIXATION REFLEX ACTA NEUROBIOL. EXP. 1980, 40: 381-385 Lecture delivered at the Warsaw Colloquium on Instrumental Conditioning and Brain Research May 1979 THE PRETRIGEMINAL CAT AS AN INSTRUMENT FOR INVESTIGATION OF THE

More information

Carsten Behn. Technical Mechanics Group Department of Mechanical Engineering Ilmenau University of Technology / Germany

Carsten Behn. Technical Mechanics Group Department of Mechanical Engineering Ilmenau University of Technology / Germany Carsten Behn Technical Mechanics Group Department of Mechanical Engineering Ilmenau University of Technology / Germany Preface Outline Introduction - Motivation - Bionic aspects - Living paradigms - Anatomy

More information

Mechanical Characteristics of Rat Vibrissae: Resonant Frequencies and Damping in Isolated Whiskers and in the Awake Behaving Animal

Mechanical Characteristics of Rat Vibrissae: Resonant Frequencies and Damping in Isolated Whiskers and in the Awake Behaving Animal 6510 The Journal of Neuroscience, July 23, 2003 23(16):6510 6519 Behavioral/Systems/Cognitive Mechanical Characteristics of Rat Vibrissae: Resonant Frequencies and Damping in Isolated Whiskers and in the

More information

A case of achromatopsia. Perceptual Colour Space. Spectral Properties of Light. Subtractive Colour Mixture. Additive Colour Mixture

A case of achromatopsia. Perceptual Colour Space. Spectral Properties of Light. Subtractive Colour Mixture. Additive Colour Mixture A case of achromatopsia The wrongness of everything was disturbing, even disgusting he turned increasingly to black and white foods to black olives and white rice, black coffee and yoghurt. These at least

More information

Perception & Attention Course. George Mather

Perception & Attention Course. George Mather Perception & Attention Course George Mather A case of achromatopsia The wrongness of everything was disturbing, even disgusting he turned increasingly to black and white foods to black olives and white

More information

Overall structure is similar to humans, but again there are differences. Some features that are unique to mammals: Found in eutherian mammals.

Overall structure is similar to humans, but again there are differences. Some features that are unique to mammals: Found in eutherian mammals. Mammalian anatomy and physiology (part II): Nervous system: Brain: Sensory input: Overall structure is similar to humans, but again there are differences. Some features that are unique to mammals: Smell:

More information

DEVELOPMENT OF THE HEAD AND NECK PLACODES

DEVELOPMENT OF THE HEAD AND NECK PLACODES DEVELOPMENT OF THE HEAD AND NECK Placodes and the development of organs of special sense L. Moss-Salentijn PLACODES Localized thickened areas of specialized ectoderm, lateral to the neural crest, at the

More information

Mechanical signals at the base of a rat vibrissa: the effect of intrinsic vibrissa curvature and implications for tactile exploration

Mechanical signals at the base of a rat vibrissa: the effect of intrinsic vibrissa curvature and implications for tactile exploration Mechanical signals at the base of a rat vibrissa: the effect of intrinsic vibrissa curvature and implications for tactile exploration Brian W. Quist and Mitra J. Z. Hartmann J Neurophysiol 107:2298-2312,

More information

The search space of the rat during whisking behavior

The search space of the rat during whisking behavior 214. Published by The Company of iologists Ltd (214) 217, 3365-3376 doi:1.1242/jeb.15338 RESERCH RTICLE The search space of the rat during whisking behavior Lucie. Huet 1 and Mitra J. Z. Hartmann 1,2,

More information

Veterinary Ophthalmology

Veterinary Ophthalmology Veterinary Ophthalmology Eyelids Protect the eye Provides part of and spreads the tear film Regulates the amount of light that enters the eye Clears foreign material Third Eyelid Protects the cornea by

More information

Your Eye, My Eye, and the Eye of the Aye Aye: Evolution of Human Vision from 65 Million Years Ago to the Present

Your Eye, My Eye, and the Eye of the Aye Aye: Evolution of Human Vision from 65 Million Years Ago to the Present # 75 Your Eye, My Eye, and the Eye of the Aye Aye: Evolution of Human Vision from 65 Million Years Ago to the Present Dr. Christopher Kirk December 2, 2011 Produced by and for Hot Science - Cool Talks

More information

Parallel Processing in the Visual System THE CLASSIFICATION OF RETINAL GANGLION CELLS AND ITS IMPACT ON THE NEUROBIOLOGY OF VISION

Parallel Processing in the Visual System THE CLASSIFICATION OF RETINAL GANGLION CELLS AND ITS IMPACT ON THE NEUROBIOLOGY OF VISION Parallel Processing in the Visual System THE CLASSIFICATION OF RETINAL GANGLION CELLS AND ITS IMPACT ON THE NEUROBIOLOGY OF VISION PERSPECTIVES IN VISION RESEARCH Series Editor: Colin Blakemore University

More information

Biomechanics of the Vibrissa Motor Plant in Rat: Rhythmic Whisking Consists of Triphasic Neuromuscular Activity

Biomechanics of the Vibrissa Motor Plant in Rat: Rhythmic Whisking Consists of Triphasic Neuromuscular Activity 3438 The Journal of Neuroscience, March 26, 2008 28(13):3438 3455 Behavioral/Systems/Cognitive Biomechanics of the Vibrissa Motor Plant in Rat: Rhythmic Whisking Consists of Triphasic Neuromuscular Activity

More information

Systems Neuroscience Nov. 7, 2017

Systems Neuroscience Nov. 7, 2017 Systems Neuroscience Nov. 7, 2017 Vestibular system & chemical senses Daniel C. Kiper kiper@ini.phys.ethz.ch http: www.ini.unizh.ch/~kiper/system_neurosci.html 1 VESTIBULAR SYSTEM A central role in the

More information

M. uch interest has recently been focused. Visual development in cats. 394 Pettigrew Investigative Ophthalmology. S.

M. uch interest has recently been focused. Visual development in cats. 394 Pettigrew Investigative Ophthalmology. S. 394 Pettigrew Investigative Ophthalmology May 1972 The one third of recordable cells in three-monthold binocularly sutured animals which you describe as "normal" could only be so called if one used the

More information

Supplemental Information. Coordination of Orofacial Motor Actions. into Exploratory Behavior by Rat

Supplemental Information. Coordination of Orofacial Motor Actions. into Exploratory Behavior by Rat Current Biology, Volume 7 Supplemental Information Coordination of Orofacial Motor Actions into Exploratory Behavior by Rat Anastasia Kurnikova, Jeffrey D. Moore, Song-Mao Liao, Martin Deschênes, and David

More information

For every purpose of dog, there are specific builds that give superior performance.

For every purpose of dog, there are specific builds that give superior performance. LAURIE EDGE-HUGHES, BScPT, MAnimSt, (Animal Physio), CAFCI, CCRT Four Leg Rehab Inc The Canine Fitness Centre Ltd For every purpose of dog, there are specific builds that give superior performance. Huskies,

More information

Behavioral Properties of the Trigeminal Somatosensory System in Rats Performing Whisker-Dependent Tactile Discriminations

Behavioral Properties of the Trigeminal Somatosensory System in Rats Performing Whisker-Dependent Tactile Discriminations The Journal of Neuroscience, August 1, 2001, 21(15):5752 5763 Behavioral Properties of the Trigeminal Somatosensory System in Rats Performing Whisker-Dependent Tactile Discriminations David J. Krupa, Matthew

More information

texp. Biol. (196a), 39,

texp. Biol. (196a), 39, texp. Biol. (196a), 39, 239-242 ith 1 plate Printed in Great Britain INNERVATION OF LOCOMOTOR MOVEMENTS BY THE LUMBOSACRAL CORD IN BIRDS AND MAMMALS BY J. TEN CATE Physiological Laboratory, University

More information

Systems Neuroscience Nov. 22, 2016

Systems Neuroscience Nov. 22, 2016 Systems Neuroscience Nov. 22, 2016 Taste and Smell Daniel C. Kiper kiper@ini.ethz.ch http: www.ini.unizh.ch/~kiper/system_neurosci.html Brain Facts -- Taste/Smell Average number of human taste buds = 5,000

More information

Name Class Date. After you read this section, you should be able to answer these questions:

Name Class Date. After you read this section, you should be able to answer these questions: CHAPTER 14 4 Vertebrates SECTION Introduction to Animals BEFORE YOU READ After you read this section, you should be able to answer these questions: How are vertebrates different from invertebrates? How

More information

It Is Raining Cats. Margaret Kwok St #: Biology 438

It Is Raining Cats. Margaret Kwok St #: Biology 438 It Is Raining Cats Margaret Kwok St #: 80445992 Biology 438 Abstract Cats are known to right themselves by rotating their bodies while falling through the air and despite being released from almost any

More information

How the eye sees. Properties of light. The light-gathering parts of the eye. 1. Properties of light. 2. The anatomy of the eye. 3.

How the eye sees. Properties of light. The light-gathering parts of the eye. 1. Properties of light. 2. The anatomy of the eye. 3. How the eye sees 1. Properties of light 2. The anatomy of the eye 3. Visual pigments 4. Color vision 1 Properties of light Light is made up of particles called photons Light travels as waves speed of light

More information

Weekly Schedule of Neuroscience (2018/2019) Week 1

Weekly Schedule of Neuroscience (2018/2019) Week 1 Week 1 27/1/2019 28/1/2019 29/1/2019 30/1/2019 31/1/2019 9:00 10:00 Introductory lecture Gross morphology of the brain Gross morphology of spinal cord Health politics & Blood supply of the CNS Language

More information

Western Bank, Sheffield S10 2TN, UK. *Author for correspondence

Western Bank, Sheffield S10 2TN, UK. *Author for correspondence 3483 The Journal of Experimental Biology 216, 3483-3494 2013. Published by The Company of Biologists Ltd doi:10.1242/jeb.087452 RESEARCH ARTICLE The evolution of active vibrissal sensing in mammals: evidence

More information

Weekly Schedule of Neuroscience (2017/2018) Week 1

Weekly Schedule of Neuroscience (2017/2018) Week 1 Week 1 28/1/2018 29/1/2018 30/1/2018 31/1/2018 1/2/2018 8:00 9:00 Health politics & 9:00 10:00 Introductory lecture Gross morphology of the brain Gross morphology of spinal cord Health politics & Blood

More information

The contralateral impairment of the orienting ocular-following reflex after lesions of the lateral suprasylvian cortex in cats

The contralateral impairment of the orienting ocular-following reflex after lesions of the lateral suprasylvian cortex in cats The contralateral impairment of the orienting ocular-following reflex after lesions of the lateral suprasylvian cortex in cats Boguslaw ~ernicki and Maciej Stasiak Department of Neurophysiology, Nencki

More information

The Laminar and Size Distribution of Commissural Efferent Neurons in the Cat Visual Cortex*

The Laminar and Size Distribution of Commissural Efferent Neurons in the Cat Visual Cortex* Arch. histol. jap., Vol. 42, No. 2 (1979) p. 119-128 The Laminar and Size Distribution of Commissural Efferent Neurons in the Cat Visual Cortex* Kazuhiko SHOUMURA Department of Anatomy (Prof. S. DEURA),

More information

Color Vision: How Our Eyes Reflect Primate Evolution

Color Vision: How Our Eyes Reflect Primate Evolution Scientific American Magazine - March 16, 2009 Color Vision: How Our Eyes Reflect Primate Evolution Analyses of primate visual pigments show that our color vision evolved in an unusual way and that the

More information

Taste and Smell. Bởi: OpenStaxCollege

Taste and Smell. Bởi: OpenStaxCollege Bởi: OpenStaxCollege Taste, also called gustation, and smell, also called olfaction, are the most interconnected senses in that both involve molecules of the stimulus entering the body and bonding to receptors.

More information

The evolution of active vibrissal sensing in mammals: evidence from vibrissal musculature and function in the marsupial opossum Monodelphis domestica

The evolution of active vibrissal sensing in mammals: evidence from vibrissal musculature and function in the marsupial opossum Monodelphis domestica First posted online on 4 June 2013 as 10.1242/jeb.087452 J Exp Biol Advance Access the Online most recent Articles. version First at http://jeb.biologists.org/lookup/doi/10.1242/jeb.087452 posted online

More information

FCI LT LM UNDERGROUND

FCI LT LM UNDERGROUND FCI LT LM UNDERGROUND Faulted Circuit Indicator for Underground Applications Catalogue # s #29 6028 000 PPZ, #29 6015 000 PPZ, #29 6228 000, #29 6215 000 Description The Navigator LT LM (Load Tracking,

More information

Persistence of vibrissal motor representation following vibrissal pad deafferentation in adult rats

Persistence of vibrissal motor representation following vibrissal pad deafferentation in adult rats Exp Brain Res (2001) 137:180 189 DOI 10.1007/s002210000652 RESEARCH ARTICLE Gianfranco Franchi Persistence of vibrissal motor representation following vibrissal pad deafferentation in adult rats Received:

More information

Body Wraps: From a Sensory Perspective Kathy Cascade, PT, Tellington TTouch Instructor

Body Wraps: From a Sensory Perspective Kathy Cascade, PT, Tellington TTouch Instructor TELLINGTON METHOD FOR COMPANION ANIMALS Revised: 4/20/2009 Body Wraps: From a Sensory Perspective Kathy Cascade, PT, Tellington TTouch Instructor One of the most useful tools of the Tellington TTouch Method

More information

Dynamics of neuronal processing in rat somatosensory cortex

Dynamics of neuronal processing in rat somatosensory cortex C.I. Moore et al. Rat SI cortical dynamics R EVIEW Dynamics of neuronal processing in rat somatosensory cortex Christopher I. Moore, Sacha. Nelson and Mriganka Sur Recently, the study of sensory cortex

More information

BEHAVIOUR OF DOGS DURING OLFACTORY TRACKING

BEHAVIOUR OF DOGS DURING OLFACTORY TRACKING J. exp. Biol. 180, 247-251 (1993) Printed in Great Britain The Company of Biologists Limited 1993 247 BEHAVIOUR OF DOGS DURING OLFACTORY TRACKING AUD THESEN, JOHAN B. STEEN* and KJELL B. DØVING Division

More information

Biometric Analyses of Vibrissal Tactile Discrimination in the Rat

Biometric Analyses of Vibrissal Tactile Discrimination in the Rat The Journal of Neuroscience, August 1990, fo(8): 2838-2848 Biometric Analyses of Vibrissal Tactile Discrimination in the Rat G. E. CarveW and D. J. Simons* Departments of Physical Therapy and *Physiology,

More information

FOCUS Question. What Whiskers Do

FOCUS Question. What Whiskers Do FOCUS Book Whiskers Use the library or the Internet to learn about three animals with whiskers that were not in this book. Choose one animal and make a model of it. Draw a picture or use art supplies to

More information

AMBULATORY REFLEXES IN SPINAL AMPHIBIANS

AMBULATORY REFLEXES IN SPINAL AMPHIBIANS 237 AMBULATORY REFLEXES IN SPINAL AMPHIBIANS BY J. GRAY AND H. W. LISSMANN Department of Zoology, University of Cambridge (Received 10 February 1940) (With Ten Text-figures) THE profound effect of spinal

More information

Improved Photoacoustic Generator

Improved Photoacoustic Generator Int J Thermophys (2014) 35:2302 2307 DOI 10.1007/s10765-014-1751-9 Improved Photoacoustic Generator T. Borowski A. Burd M. Suchenek T. Starecki Received: 17 November 2013 / Accepted: 23 September 2014

More information

Serendipity and the Siamese Cat: The Discovery That Genes for Coat and Eye Pigment Affect the Brain. Jon H. Kaas

Serendipity and the Siamese Cat: The Discovery That Genes for Coat and Eye Pigment Affect the Brain. Jon H. Kaas Serendipity and the Siamese Cat: The Discovery That Genes for Coat and Eye Pigment Affect the Brain Jon H. Kaas Abstract One day in the late 1960s, Ray Guillery was examining brain sections through the

More information

SESSION 2 8:45 10am. In-office Procedures. Contraindications to Injection. Introduction Joint and Soft Tissue Injection. Learning Objective

SESSION 2 8:45 10am. In-office Procedures. Contraindications to Injection. Introduction Joint and Soft Tissue Injection. Learning Objective SESSION 2 8:45 10am Procedures You Can Do In Your Office SPEAKER Roger W. Bush, MD, MACP Presenter Disclosure Information The following relationships exist related to this presentation: Roger Bush, MD,

More information

Whiskerbot: A Robotic Active Touch System Modeled on the Rat Whisker Sensory System

Whiskerbot: A Robotic Active Touch System Modeled on the Rat Whisker Sensory System Whiskerbot: A Robotic Active Touch System Modeled on the Rat Whisker Sensory System Martin J. Pearson 1, Anthony G. Pipe 1, Chris Melhuish 1, Ben Mitchinson 2, Tony J. Prescott 2 1 Bristol Robotics Laboratory,

More information

Cardiac MRI Morphology 2004

Cardiac MRI Morphology 2004 Cardiac MRI Morphology 2004 1 2 Disclaimers The information in this presentation is strictly educational and is not intended to be used for instruction as to the practice of medicine. Healthcare practitioners

More information

Key words: Mouse motor cortex, intracortical microstimulation, motor representation,.corticomotor asymmetry.

Key words: Mouse motor cortex, intracortical microstimulation, motor representation,.corticomotor asymmetry. Neuroscience and Behavioral Physiology, Vol. 28, No. 1, 1998 FUNCTIONAL MAPPING OF THE MOTOR CORTEX OF THE WHITE MOUSE BY A MICROSTIMULATION METHOD I. V. Pronichev and D. N. Lenkov Studies on 33 anesthetized

More information

Barrelettes without Barrels in the American Water Shrew

Barrelettes without Barrels in the American Water Shrew Barrelettes without Barrels in the American Water Shrew Kenneth C. Catania 1 *, Elizabeth H. Catania 1, Eva K. Sawyer 2, Duncan B. Leitch 2 1 Department of Biological Sciences, Vanderbilt University, Nashville,

More information

UTILITY OF THE NEUROLOGICAL EXAMINATION IN RATS

UTILITY OF THE NEUROLOGICAL EXAMINATION IN RATS ACTA NEUROBIOL. ELW. 1980, 40 : 999-3 Short communication UTILITY OF THE NEUROLOGICAL EXAMINATION IN RATS David E. TUPPER and Robert B. WALLACE Laboratory of Developmental Psychobiology, University of

More information

Different animals move in different ways. Cut and sort the animals into the correct groups. Walk Fly Swim Slide

Different animals move in different ways. Cut and sort the animals into the correct groups. Walk Fly Swim Slide Different animals move in different ways. Cut and sort the animals into the correct groups. Walk Fly Swim Slide I can distinguish between living and non-living things. I can sort into groups and explain

More information

Non-homogeneous spatial configuration of vibrissae cortical representation in layer IV of the barrel somatosensory cortex

Non-homogeneous spatial configuration of vibrissae cortical representation in layer IV of the barrel somatosensory cortex Biol Res 41: 461-471, 2008 BR 461 Non-homogeneous spatial configuration of vibrissae cortical representation in layer IV of the barrel somatosensory cortex ELIANA GUIC 1, XIMENA CARRASCO 2, EUGENIO RODRÍGUEZ

More information

A quantitative study of hair growth using mouse and rat vibrissal follicles

A quantitative study of hair growth using mouse and rat vibrissal follicles /. Embryol. exp. Morph. Vol. 72, pp. 209-224, 1982 209 Printed in Great Britain Company of Biologists Limited 1982 A quantitative study of hair growth using mouse and rat vibrissal follicles I. Dermal

More information

Human Uniqueness. Human Uniqueness. Why are we so different? 12/6/2017. Four Candidates

Human Uniqueness. Human Uniqueness. Why are we so different? 12/6/2017. Four Candidates Our Hominid Ancestors In humans, brain tissue has more than doubled over the past 2 million years. Break from chimps 3-5 million Our Hominid Ancestors Our Hominid Ancestors Relative Brain Size in Our Ancestors

More information

Sense of Smell. By: Liz, Gen, Ethan, and Meakena

Sense of Smell. By: Liz, Gen, Ethan, and Meakena Sense of Smell By: Liz, Gen, Ethan, and Meakena Function of smell The sense and function of smell is also called olfactometry, the testing and measurement of the sensitivity of the sense of smell. Smell

More information

MGL Avionics EFIS G2 and iefis. Guide to using the MGL RDAC CAN interface with the UL Power engines

MGL Avionics EFIS G2 and iefis. Guide to using the MGL RDAC CAN interface with the UL Power engines MGL Avionics EFIS G2 and iefis Guide to using the MGL RDAC CAN interface with the UL Power engines General The RDAC CAN interface forms the bridge between the UL Power ECU and an MGL Avionics G2 EFIS system

More information

PSY 2364 Animal Communication. Elk (Cervus canadensis) Extra credit assignment. Sad Underwing (Catocala maestosa) 10/11/2017

PSY 2364 Animal Communication. Elk (Cervus canadensis) Extra credit assignment. Sad Underwing (Catocala maestosa) 10/11/2017 PSY 2364 Animal Communication Elk (Cervus canadensis) Kingdom: Phylum: Class: Order: Family: Genus: Species: Animalia Chordata Mammalia Artiodactyla Cervidae Cervus canadensis Extra credit assignment Sad

More information

IQ Range. Electrical Data 3-Phase Power Supplies. Keeping the World Flowing

IQ Range. Electrical Data 3-Phase Power Supplies. Keeping the World Flowing IQ Range Electrical Data 3-Phase Power Supplies Keeping the World Flowing Contents Section Page Introduction 3 50 Hz 380 V 5 0 V 6 415 V 7 4 V 8 500 V 9 6 V 60 Hz 8 V 11 2 V 0 V 13 4 V 14 460 V 15 480

More information

Area Centralis Position Relative to the Optic Disc Projection in Kittens as o Function of Age

Area Centralis Position Relative to the Optic Disc Projection in Kittens as o Function of Age Investigative Ophthalmology & Visual Science, Vol. 29, No. 8, August 1988 Copyright Association.for Research in Vision and Ophthalmology Area Centralis Position Relative to the Optic Disc Projection in

More information

2 nd Term Final. Revision Sheet. Students Name: Grade: 11 A/B. Subject: Biology. Teacher Signature. Page 1 of 11

2 nd Term Final. Revision Sheet. Students Name: Grade: 11 A/B. Subject: Biology. Teacher Signature. Page 1 of 11 2 nd Term Final Revision Sheet Students Name: Grade: 11 A/B Subject: Biology Teacher Signature Page 1 of 11 Nour Al Maref International School Riyadh, Saudi Arabia Biology Worksheet (2 nd Term) Chapter-26

More information

A Biomimetic Haptic Sensor

A Biomimetic Haptic Sensor A Biomimetic Haptic Sensor Martin J. Pearson, Ian Gilhespy, Chris Melhuish, Ben Mitchinson, Mokhtar Nibouche, Anthony G. Pipe, Tony J. Prescott Intelligent Autonomous Systems laboratory, University of

More information

Visual and Instrumental Evaluation of Mottling and Striping

Visual and Instrumental Evaluation of Mottling and Striping Visual and Instrumental Evaluation of Mottling and Striping Friedhelm Fensterseifer and Severin Wimmer BYK-Gardner User Meeting 2013 - Innsbruck, Austria Mottling / cloudiness of metallic coatings Irregular

More information

ReproMatic & FluxxBreeder

ReproMatic & FluxxBreeder ReproMatic & FluxxBreeder The feeding system developed specifically for broiler breeders ReproMatic the feeding system for broiler breeders ReproMatic is a Big Dutchman feeding system which was developed

More information

Overlap of sensory representations in rat barrel cortex after neonatal vibrissectomy

Overlap of sensory representations in rat barrel cortex after neonatal vibrissectomy Overlap of sensory representations in rat barrel cortex after neonatal vibrissectomy Malgorzata Kossut and Ewa Siucinska Department of Neurophysiology, Nencki Institute of Experimental Biology, 3 Pasteur

More information

Phylum Echinodermata. Biology 11

Phylum Echinodermata. Biology 11 Phylum Echinodermata Biology 11 General characteristics Spiny Radial symmetry Water vascular system Endoskeleton Endoskeleton Hard, spiny, or bumpy endoskeleton covered with a thin epidermis. Endoskeleton

More information

The Brain and Senses. Birds perceive the world differently than humans. Avian intelligence. Novel feeding behaviors

The Brain and Senses. Birds perceive the world differently than humans. Avian intelligence. Novel feeding behaviors The Brain and Senses Birds perceive the world differently than humans Color and IR vision are highly developed Hearing is superior, owls track prey in total darkness Birds navigate using abilities to sense:

More information

TACTILE ABILITIES OF THE FLORIDA MANATEE (TRICHECHUS MANATUS LATIROSTRIS)

TACTILE ABILITIES OF THE FLORIDA MANATEE (TRICHECHUS MANATUS LATIROSTRIS) TACTILE ABILITIES OF THE FLORIDA MANATEE (TRICHECHUS MANATUS LATIROSTRIS) By JOSEPH CHARLES GASPARD III A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

More information

Pet Selective Automated Food Dispenser

Pet Selective Automated Food Dispenser Pet Selective Automated Food Dispenser By Advika Battini Ali Yaqoob Vibhu Vanjari TA: Yuchen He Team Number: 46 Proposal for ECE 445, Senior Design, Spring 2018, University of Illinois Urbana Champaign

More information

specific innervation of the muscle, so that when the nerves of a fast and of a

specific innervation of the muscle, so that when the nerves of a fast and of a Quart. J. exp. Phy8iol. (1967) 52, 293-304 THE DIFFERENTIATION OF CONDUCTION VELOCITIES OF SLOW TWITCH AND FAST TWITCH MUSCLE MOTOR INNERVATIONS IN KITTENS AND CATS. By R. M. A. P. RIDGE.* From the Physiology

More information

8/19/2013. Topic 14: Body support & locomotion. What structures are used for locomotion? What structures are used for locomotion?

8/19/2013. Topic 14: Body support & locomotion. What structures are used for locomotion? What structures are used for locomotion? Topic 4: Body support & locomotion What are components of locomotion? What structures are used for locomotion? How does locomotion happen? Forces Lever systems What is the difference between performance

More information

Are my trawl wires marked correctly? Is my trawl spread optimally? Is the trawl on bottom?

Are my trawl wires marked correctly? Is my trawl spread optimally? Is the trawl on bottom? TRAWLMASTER Are my trawl wires marked correctly? Is my trawl spread optimally? Is the trawl on bottom? Trawlmaster is a wireless trawl monitoring system that provides complete trawl geometry. This is one

More information

Honey Bees. Anatomy and Function 9/26/17. Similar but Different. Honey Bee External Anatomy. Thorax (Human Chest): 4 Wings & 6 Legs

Honey Bees. Anatomy and Function 9/26/17. Similar but Different. Honey Bee External Anatomy. Thorax (Human Chest): 4 Wings & 6 Legs Honey Bee Anatomy and Function How Honey Bees are Built and How the Function People Eat: Everything - Meat and Potatoes Omnivores Meat and Vegetables Digest: Stomach & Intestines Excrete: Feces and Urine

More information

ReproMatic & FluxxBreeder

ReproMatic & FluxxBreeder ReproMatic & FluxxBreeder the feeding system for broiler breeders REPROMATIC the feeding system especially for broiler breeders REPROMATIC is a feeding system developed by Big Dutchman to ideally meet

More information

FPGA-based Emotional Behavior Design for Pet Robot

FPGA-based Emotional Behavior Design for Pet Robot FPGA-based Emotional Behavior Design for Pet Robot Chi-Tai Cheng, Shih-An Li, Yu-Ting Yang, and Ching-Chang Wong Department of Electrical Engineering, Tamkang University 151, Ying-Chuan Road, Tamsui, Taipei

More information

Behavioral Phenotyping of Naked Mole Rat (Heterocephalus glaber)

Behavioral Phenotyping of Naked Mole Rat (Heterocephalus glaber) Behavioral Bioassay IBRO Neuroscience School 2014 Behavioral Phenotyping of Naked Mole Rat (Heterocephalus glaber) Nilesh B. Patel Dept Medical Physiology University of Nairobi, Kenya Richard Alexander

More information

TRAINING BULLETIN #147

TRAINING BULLETIN #147 TRAINING BULLETIN #147 COMBAT APPLICATION TOURNIQUET (C-A-T) I. Introduction The Combat Application Tourniquet (C-A-T) is a small, lightweight one-handed tourniquet that completely occludes arterial blood

More information

الكلب عضة = bite Dog Saturday, 09 October :56 - Last Updated Wednesday, 09 February :07

الكلب عضة = bite Dog Saturday, 09 October :56 - Last Updated Wednesday, 09 February :07 Dog bite Almost 75 million dogs live in the United States, and since many victims of dog bites don't seek medical care or report the attack, it may be that the U.S. Center for Disease Control and Prevention

More information

Loose Leash Walking. Core Rules Applied:

Loose Leash Walking. Core Rules Applied: Loose Leash Walking Many people try to take their dog out for a walk to exercise and at the same time expect them to walk perfectly on leash. Exercise and Loose Leash should be separated into 2 different

More information

what do I need to know about my brain, heart and skeleton?

what do I need to know about my brain, heart and skeleton? Grade: 2 Subject: Integrated Studies Unit Title: My Body (Part 11) Term: 1 Duration: Focus Question: 5 x 90 minutes what do I need to know about my brain, heart and skeleton? Attainment Target: Give and

More information

Elicia Calhoun Seminar for Mobility Challenged Handlers PART 3

Elicia Calhoun Seminar for Mobility Challenged Handlers PART 3 Elicia Calhoun Seminar for Mobility Challenged Handlers Directional cues and self-control: PART 3 In order for a mobility challenged handler to compete successfully in agility, the handler must be able

More information

A. Body Temperature Control Form and Function in Mammals

A. Body Temperature Control Form and Function in Mammals Taxonomy Chapter 22 Kingdom Animalia Phylum Chordata Class Mammalia Mammals Characteristics Evolution of Mammals Have hair and First appear in the mammary glands Breathe air, 4chambered heart, endotherms

More information

Canine Myofunctional Therapy (Canine Massage)

Canine Myofunctional Therapy (Canine Massage) Canine Myofunctional Therapy (Canine Massage) Canine Myofunctional Therapy (Canine Massage) Introduction Canine Myofunctional Therapy is the use of specifically designed massages for addressing problems

More information

Complementary therapies

Complementary therapies Chapter 7 Complementary therapies Complementary therapies can offer relief from the symptoms of osteoarthritis, or some of the side effects of conventional drug treatments. And a number of owners believe

More information

University of Pennsylvania. From Perception and Reasoning to Grasping

University of Pennsylvania. From Perception and Reasoning to Grasping University of Pennsylvania GRASP LAB PR2GRASP: From Perception and Reasoning to Grasping Led by Maxim Likhachev Kostas Daniilides Vijay Kumar Katherine J. Kuchenbecker Jianbo Shi Daniel D. Lee Mark Yim

More information

HOW XTC IMPROVED MINOXIDIL PENETRATION - 5 WAYS!

HOW XTC IMPROVED MINOXIDIL PENETRATION - 5 WAYS! HOW XTC IMPROVED MINOXIDIL PENETRATION - 5 WAYS! What Hinders Minoxidil from Working Well 1. Sebum from sebaceous gland blocks the hair follicle. 2. Minoxidil therefore, cannot penetrate through the sebum

More information

RAT GRIMACE SCALE (RGS): THE MANUAL

RAT GRIMACE SCALE (RGS): THE MANUAL RAT GRIMACE SCALE (RGS): THE MANUAL I. VIDEO & FRAME CAPTURE PROCEDURES: Place rats individually in cubicles (21 x 10.5 x 9 cm high), with two walls of transparent Plexiglas and two opaque side walls (to

More information

Lameness Exams. Evaluating the Lame Horse

Lameness Exams. Evaluating the Lame Horse Lameness Exams Evaluating the Lame Horse Stress, strain, or injury can take a toll on any horse, even one with no obvious conformation defects. When lameness occurs, you should contact your veterinarian

More information

Evolutionary Trade-Offs in Mammalian Sensory Perceptions: Visual Pathways of Bats. By Adam Proctor Mentor: Dr. Emma Teeling

Evolutionary Trade-Offs in Mammalian Sensory Perceptions: Visual Pathways of Bats. By Adam Proctor Mentor: Dr. Emma Teeling Evolutionary Trade-Offs in Mammalian Sensory Perceptions: Visual Pathways of Bats By Adam Proctor Mentor: Dr. Emma Teeling Visual Pathways of Bats Purpose Background on mammalian vision Tradeoffs and bats

More information

Modeling and Control of Trawl Systems

Modeling and Control of Trawl Systems Modeling and Control of Trawl Systems Karl-Johan Reite, SINTEF Fisheries and Aquaculture Supervisor: Professor A. J. Sørensen * Advisor: Professor H. Ellingsen * * Norwegian University of Science and Technology

More information

FAQ (Frequently Asked Questions)

FAQ (Frequently Asked Questions) File: FAQ-FCI-Updated-12-21-12 Page: 1 of 11 Table of Contents Pg(s) I. Benefits of using FCI s... 1 II. Installation... 2-5 III. AccQTrip for OLM & UCM Models... 5 IV. Adaptive trip Logic for 1547 & 1548

More information

Case 2: Feline Stroke

Case 2: Feline Stroke History Name: Billy Age & Sex : MC, 9 yrs old. Breed: domestic short hair feline Case 2: Feline Stroke Occupation: Indoor/outdoor cat. He loves to hunt, prowl around in the woods. Bill is a keen observer

More information

LATARJET Open Surgical technique

LATARJET Open Surgical technique 1 LATARJET Open Surgical technique Steps A. Exposure B. Preparation of coracoid holes C. Cutting the coracoid D. Fixing the Double Cannula to the coracoid E. Exposure of both sides of Subscapularis F.

More information

SPANISH WATER DOG CLUB

SPANISH WATER DOG CLUB SPANISH WATER DOG CLUB Health Seminar March 2017 Presented by: Joy Middleton HEALTH REPORT New for 2017 A report as to what the SWDC are doing with regards to Health Any new information from the Kennel

More information