Phenotypic variation in smooth softshell turtles (Apalone mutica) from eggs incubated in constant versus fluctuating temperatures

Size: px
Start display at page:

Download "Phenotypic variation in smooth softshell turtles (Apalone mutica) from eggs incubated in constant versus fluctuating temperatures"

Transcription

1 Oecologia (2003) 134: DOI /s z ECOPHYSIOLOGY Grant M. Ashmore Fredric J. Janzen Phenotypic variation in smooth softshell turtles (Apalone mutica) from eggs incubated in constant versus fluctuating temperatures Received: 15 January 2002 / Accepted: 15 October 2002 / Published online: 26 November 2002 Springer-Verlag 2002 Abstract Temperatures experienced during embryonic development elicit well-documented phenotypic variation in embryonic and neonatal animals. Most research, however, has only considered the effects of constant temperatures, even though developmental temperatures in natural settings fluctuate considerably on a daily and seasonal basis. A laboratory study of 15 clutches of smooth softshell turtles (Apalone mutica) was conducted to explicitly examine the influence of thermal variance on phenotypic variation. Holding mean temperature constant and eliminating substrate moisture effects permitted a clear assessment of the impact of thermal variance on hatching success, incubation length, hatchling body size, swimming speed, and righting time. Incubation length and swimming speed varied significantly among temperature treatments. Both traits tended to increase with increasing thermal variance during embryonic development. Clutch significantly affected all traits examined, except righting time, even after accounting for the effects of initial egg mass. These results highlight the importance of accounting for the impact of both thermal mean and variance on phenotypic variation. The findings also strengthen the increasing recognition of maternal clutch effects as critical factors influencing phenotypic variation in neonatal animals. Keywords Egg Embryo Hatchling Temperature Turtle Introduction Abiotic factors exert fundamental impacts on developing embryos. In a wide variety of taxa, developmental temperature in particular can affect numerous key G.M. Ashmore F.J. Janzen () ) Department of Zoology & Genetics, Iowa State University, Ames, IA , USA fjanzen@iastate.edu Tel.: Fax: ecological traits of offspring, including development rate, pigmentation pattern, body size, growth, behavior, and even sexual differentiation (e.g., Ratte 1985; Deeming and Ferguson 1991; Burggren and Just 1992; Schrag et al. 1994; Billerbeck et al. 2000). Although such well-known ecological phenomena are often underappreciated in the current genomic age, their frequent rediscovery by geneticists illustrates the perils involved in ignoring the important role of the environment in development (e.g., Pennisi 2002). Environmental effects on developing reptile embryos have been well established in the last few decades. Survivorship and phenotypic attributes are influenced by differing environmental conditions (reviewed in Deeming and Ferguson 1991). Among those species that lay flexible-shelled eggs, both temperature and substrate moisture typically play a large part in affecting hatchling traits (reviewed in Packard and Packard 1988). For example, incubation on relatively wet substrates tends to cause turtle eggs, embryos and, subsequently, hatchlings to be larger in size than those eggs kept on drier substrates. Moisture also influences the length of incubation and hatching success (Packard and Packard 1988), as well as locomotor performance of neonates (Miller et al. 1987). In contrast, species that lay rigid-shelled eggs tend to be affected by incubation temperature (Janzen 1993b) but less so by water content in the soil (Leshem and Dmi el 1986). Substrate moisture seems not to affect embryonic metabolism or hatchling mass (Packard et al. 1979, 1981; Packard and Packard 1991). Consequently, these species are excellent models for examining the influence of temperature on phenotypic variation of hatchlings without the potentially confounding effects of substrate moisture. Different incubation temperatures elicit well-documented variation in a number of traits in embryonic and hatchling reptiles (e.g., Ewert 1979; Deeming and Ferguson 1991; Janzen 1993b). At the same time, these findings may not reflect what truly occurs in a natural setting. Temperatures are kept constant throughout incubation in most studies, yet it is well known that temperature within

2 a reptile nest fluctuates on a daily basis (e.g., Plummer et al. 1994; Shine and Harlow 1996; Valenzuela 2001). How and whether fluctuating temperatures influence developing reptile embryos differently than constant temperatures with the same mean is largely unknown (Georges et al. 1994; Overall 1994; Shine and Harlow 1996; Shine et al. 1997; Doody 1999; Andrews et al. 2000; Webb et al. 2001), except for extensive work on temperature-dependent sex determination in turtles (most recently discussed in Valenzuela 2001). In this study, we evaluate the influence of constant versus fluctuating incubation temperatures (holding the mean constant) on hatching success, body size, and performance of hatchlings of the smooth softshell turtle, Apalone mutica (LeSueur 1827). Unlike many turtles, softshells (Trionychidae) lay rigid-shelled eggs (Fitch and Plummer 1975; Ernst et al. 1994); thus, substrate moisture can be eliminated as a major causative agent leading to developmental perturbation. Consequently, phenotypic variation detected in different temperature regimens in A. mutica can be confidently assigned to such thermal treatments after clutch effects have been taken into account. Materials and methods Egg collection and treatment Eggs of A. mutica were collected from 15 natural nests on a sandbar in the Cedar River near Muscatine, Iowa, USA on 10 June All eggs were presumed to have been laid within 2 days of collection as indicated by either the presence of a small chalk spot (i.e., beginning of an air space) or no spot at all (Ewert 1979, 1985; Plummer et al. 1994). Eggs were individually marked in the field and the majority were transported to the laboratory in Ames, Iowa. Forty-five eggs, three chosen randomly from each clutch, were weighed in the field and reburied to study natural phenotypic variation. Data beyond initial mass and count of these eggs are not included in this report as the sandbar flooded twice during incubation and drowned all but two of the embryos in the companion field experiment. In the laboratory, eggs were brushed free of sand and were weighed to the nearest 0.01 g. At least one egg from each of 13 clutches was arranged randomly in a 3 6 matrix in each of 9 covered plastic boxes containing moistened vermiculite (300 g dry vermiculite: 337 g water» 150 kpa) (Janzen et al. 1990). For the remaining two clutches, which had counts of 10 and 11 eggs, one egg was arranged randomly in each of 7 and 8 of the 9 covered plastic boxes, respectively. Water was added to the boxes once each week throughout incubation according to weight lost by evaporation. Three boxes were placed in each of three incubators: one kept at a constant 30.5C, another kept at C, and a third kept at C. These conditions were confirmed with HOBO-TEMP temperature loggers (Onset Computer, Pocasset, Mass.) (Fig. 1). Fluctuation was maintained at 12 h (+) and 12 h ( ). Boxes were rotated within each incubator every other day to minimize potential thermal gradients. Unfortunately, treatments could not be replicated for logistic reasons and are thus confounded with incubators. Nonetheless, the fidelity of the temperature records, the clear differences between the treatments (Fig. 1), and the similarity in results between the constant 30.5C treatment and prior research using a similar constant temperature (Janzen 1993b) lend confidence in interpreting the results of this experiment in the context of thermal, rather than incubator, effects (see also Packard and Packard 1993). The mean temperature of 30.5C was chosen based on higher survival rates found in prior studies of A. mutica at 30C (Ewert 1979; Janzen 1993b; Plummer et al. 1994). Fluctuation was chosen to be maximal at 4C because embryonic development below 26.5C might be inhibited (Janzen 1993b). Temperature fluctuations at 12-min intervals measured in the center of nests (~20 cm below the surface) at the collection site in summer 2000 (via HOBO-TEMP temperature loggers) confirmed the laboratory treatments to be somewhat stepped but reasonably similar to natural nest conditions (Fig. 1). Treatment effects were not considered here in the context of constant temperature equivalents (sensu Georges et al. 1994) because the approach has not (yet) been widely validated (e.g., Doody 1999). Hatching success and days to pip Immediately after an egg was discovered to have pipped, a bottomless plastic cup was placed around the egg to confine the turtle for correct identification. Dates of pipping and hatching were recorded and rarely differed by more than a few hours for each hatchling. Days to pip (i.e., duration of incubation) was analyzed by two-way ANOVA with incubation treatment as a fixed factor, and clutch and the interaction between clutch and incubation treatment as random effects. Initial egg mass was tested as a potential covariate but was found to have no significant effect (P=0.22) and was thus discarded. All ANOVAs and ANCOVAs were performed using Proc Mixed in SAS v Significance levels for variance components for random effects were estimated using the test option in Proc GLM. Only P-values are thus reported for all ANOVAs and ANCOVAs in this paper for simplicity. Body size 183 Fig. 1 Temperature profiles for a 2-week period for one Apalone mutica nest on a sandbar in the Cedar River and three incubationtemperature treatments used in the laboratory during the summer of Daily temperature fluctuations in nests were substantial (occasionally >10C) except when nests were flooded (e.g., June). Overall, egg-incubation conditions in the laboratory were a reasonable reflection of the mean and variance of nest temperatures Two days after hatching, turtles were washed free of vermiculite, towel dried, and then weighed to the nearest 0.01 g. Immediately thereafter, midline carapace length, carapace width at midbody, and plastron length were measured to the nearest 0.1 mm with dial calipers. Intercorrelations among measures of body size were calculated using Statview v Analyses of covariance, with initial egg mass as the covariate, were performed to evaluate the effects of

3 184 incubation treatment (fixed), clutch (random), and the interaction between clutch and incubation treatment (random) on the various measures of body size. ANCOVA provides some control for maternal effects associated with egg mass that could otherwise be confounded with different clutch effects (Garland 1984, 1988; Garland and Bennett 1990; Janzen 1993a). Performance Hatchlings were housed individually in covered, though not sealed, plastic cups with overly saturated paper towels at 23C. Though previous studies of A. mutica involved keeping hatchlings in 2 cm tap water prior to performance testing (Janzen 1993b), this arrangement was avoided until after testing in this study. That is, the fitness value of performance may be best revealed at the time of initial exposure to an environment, such as a terrestrially hatched neonate first encountering its permanent aquatic home (e.g., Wyneken and Salmon 1992). Swimming speed was evaluated immediately after body-size measurements were recorded. Three swim tests were performed for each hatchling with a 30-min rest between trials. Swimming speed for a 1-m interval was measured in a 1.2-m 10-cm trough containing water 2.5 cm deep. Hatchlings were stimulated to move by tapping the trough just behind their tails with forceps to simulate predatory attacks by birds. Although a few hatchlings refused to swim with this prompting, no physical contact between the forceps and hatchling occurred. Swimming speed was calculated from the mean of all trials completed by an individual. Thirty minutes after completion of the swim trials, flip tests were performed. Each hatchling was turned over on its back on a dry paper towel on a level surface and given a maximum of 60 s to right itself. A 15-s resting period was permitted between each flip. Righting time was determined from the average of five flip trials. Two-way ANOVAs were used to evaluate the influence of incubation treatment as a fixed factor, and clutch and the interaction between clutch and incubation treatment as random effects on mean swimming speed and mean righting time. Hatchling mass and carapace length were tested as potential covariates but were found to have no significant effect on either swimming speed or righting time (P>0.21 in all cases) and were thus discarded. All turtles were released in the Cedar River at the site of egg collection on 1 September Results Eggs The mass of eggs ranged from 5.36 to 7.69 g with an average of g ðx SDÞ. Clutch size was as small as 10 and as large as 20 and averaged eggs ðx SDÞ. Total clutch masses ranged from to g with an average of g ðx SDÞ. These results are consistent with those observed for this same population of A. mutica in 1989 and 1990 (Janzen 1993b): egg masses of g (1989) and g (1990), clutch sizes of (1989) and (1990), and clutch masses of g (1989) and g (1990). Hatching success and days to pip Hatching success of fertile eggs, which was extremely high, was not affected by incubation treatment (Table 1). Incubation temperature treatment and clutch, though not Table 1 Statistics for hatching success, days to pip, egg and hatchling measurements, and performance as a function of incubation-temperature treatment. Values (other than hatching success and initial egg mass) are least-squares means SEs. Data for the four body-size variables were adjusted by ANCOVA to remove the effect of initial egg mass. Sample sizes are given in parentheses above each column with the following exceptions: n=44 for days to pip from C; n=44 and n=45 for swimming speed from C and C, respectively; n=39, n=42, and n=43 for righting time from 30.5C, C, and C, respectively Variable 30.5C C C (n=44) (n=45) (n=46) Hatching success (%) Days to pip (days) Initial egg mass (g) Hatchling mass (g) Carapace length (mm) Carapace width (mm) Plastron length (mm) Swimming speed (cm* s 1 ) Righting time (s) the interaction between the two, influenced the number of days to pip (P< for both temperature and clutch and P=0.90 for their interaction). Developmental duration was shortest in the C treatment and longest in the C treatment, with the constant 30.5C in between (Table 1). Post-hoc tests indicated that all treatments differed significantly from each other (P in all three pairwise comparisons). Body size All measures of hatchling body size were significantly and positively correlated with initial egg mass. Additionally, these measures were highly intercorrelated (Table 2), indicating that larger hatchlings tended to hatch from larger eggs. Consequently, initial egg mass was used as a covariate in statistical analyses of the effect of incubation temperature and clutch on body size. Little variation was detected within each measure of body size across the three temperature conditions (Table 1): hatchlings were similar in size regardless of incubation treatment (P 0.17 in all four cases). There were also no significant treatment by clutch interactions (P 0.17 in all four cases). In contrast, clutch explained significant variation in all four measures of hatchling size (P 0.05 in all four cases). Performance Swimming speed was positively correlated with all measures of body size. In contrast, righting time was not significantly correlated with any measure of body size (Table 2). Not surprisingly, there was also no significant correlation between the two measures of performance. Swimming speed was strongly affected by temperature treatment and clutch (P in both cases), but not by

4 Table 2 Correlations among size and performance measurements; n=135 with the following exceptions: n=134 for correlations involving days to pip; n=133 for correlations involving swimming Variable Initial egg mass Hatchling mass Carapace length speed; and n=124 for correlations involving righting time. P 0.01 except as indicated Carapace width Plastron length Swimming speed Righting time Days to pip.130 b b a Initial egg mass b Hatchling mass b Carapace length a.040 b Carapace width a.105 b Plastron length b Swimming speed b a 0.02 P 0.07 P their interaction (P=0.96). The greater the temperature fluctuation, the greater the swimming speed (Table 1). More specifically, post-hoc tests indicated that hatchlings from the constant 30.5C and C treatments were significantly different from (i.e., slower than) hatchlings from the C treatment (P<0.01 in both cases). Swimming speeds of turtles from the constant 30.5C and C treatments were not significantly different from each other, however (P=0.27). Righting time was not significantly influenced by temperature treatment, clutch, or their interaction (P 0.09 in all three cases). Even so, righting time tended to increase with increasing temperature fluctuation (Table 1). Discussion Incubation temperature has dramatic effects on eggs, embryos, and offspring of oviparous organisms (Ewert 1979; Ratte 1985; Deeming and Ferguson 1991). Nonetheless, these thermal impacts have largely been characterized on the basis of constant temperatures, although temperatures during embryogenesis fluctuate considerably in nature. Research on temperature-dependent sex determination in reptiles has increasingly recognized the importance of this thermal variation (e.g. Valenzuela 2001). However, with the exception of a rich literature on insects (reviewed in Ratte 1985; Hagstrum and Milliken 1991), only a handful of experiments (on lizards, snakes, and turtles) have explicitly evaluated the impact of thermal variance per se on eggs, embryos, and offspring (Georges et al. 1994; Overall 1994; Shine and Harlow 1996; Shine et al. 1997; Doody 1999; Andrews et al. 2000; Webb et al. 2001). In general, they find that fluctuating incubation temperatures elicit significant variance in many phenotypic traits that often differs from variance obtained using constant temperatures even under identical mean temperatures. In our study, temperature fluctuation had a profound effect on incubation length and swimming speed in a turtle. Our results are particularly insightful because, with the exception of Doody (1999), prior research using vertebrates cannot disentangle the linked effects of fluctuating temperatures and concordantly changing hydric environments on eggs, embryos, and offspring (Packard and Packard 1988). Despite considerable phylogenetic divergence, we compare below our findings with those obtained using lizards and snakes, due to the paucity of relevant studies on turtles (Georges et al. 1994; Doody 1999). Hatching success and days to pip Hatching success rates similar to, but slightly lower than, those found in this study were attained in studies of Apalone species in which incubation temperature stayed constant throughout incubation at some value between 25C and 30C (Ewert 1979; Packard et al. 1979, 1981; Janzen 1993b; Plummer et al. 1994). Doody (1999) found that hatching success for A. spinifera (LeSueur 1827) was slightly higher for eggs incubated at constant temperatures than for eggs incubated at fluctuating temperatures in artificial nests. These results could derive from extreme low temperatures experienced in the most shaded artificial nest in his study and may not be a property of fluctuating temperatures per se. Embryos subjected to higher daily fluctuation (30.5 4C) took substantially longer to pip (>2 days on average) than those at either the constant (30.5C) or lower fluctuation (30.5 2C) treatment (Table 1). A portion of this pattern may reflect differences among treatments in tendency of turtles to pip eggs earlier versus later in the day (a.m.: 59.0% from 30.5C, 56.7% from C, and 21.7% from C). Overall, this result is consistent with Shine et al. (1997), although both the mean and the variance of incubation temperature changed between treatments in their study, so disentangling these effects on incubation length is difficult and limits direct comparison with results of other studies. In contrast, greater daily temperature fluctuation reduced the incubation period in other squamate reptiles (Overall 1994; Shine and Harlow 1996); additional studies of various reptiles have detected no differential effect of constant and fluctuating incubation temperatures on incubation length (Georges et al. 1994; Andrews et al. 2000; Webb et al. 2001).

5 186 Constant-temperature studies of turtle embryos reveal that incubation length increases exponentially as incubation temperature decreases (Ewert 1979; Choo and Chou 1987; Leshem et al. 1991; Janzen 1993b; Ackerman 1994; Plummer et al. 1994; Doody 1999). Thus, the drop in incubation temperature to 26.5C for 12 h each day in our study may have disproportionately slowed embryonic development relative to the increased rate induced by the rise in incubation temperature to 34.5C for 12 h each day. In this vein, contrasting results on the phenotypic effects of constant versus fluctuating temperatures from studies of diverse taxa may be caused by intrinsic physiological limits (=developmental minima/maxima) rather than by phylogenetic differentiation. Body size Little variation was detected among body-size measures at hatching across temperature treatments. This result is largely consistent with findings from similar studies of reptiles (Shine et al. 1997; Doody 1999; Andrews et al. 2000). The exceptions are that tail length of a lizard increases (Shine and Harlow 1996) and that, in a snake, snout-vent length and relative tail length decrease and relative body mass increases (Webb et al. 2001) with increasing thermal variance; in another lizard, hatchling mass is greatest at intermediate thermal variance (Overall 1994). The explanation for these different results is unknown. Interestingly, however, the variance in all measures of body size in our study was lowest in the C environment compared to the other two, thus signifying slightly greater phenotypic uniformity (result not shown). Fluctuating temperatures during incubation in nature (Fig. 1) therefore might increase phenotypic uniformity within nests in this population. In support of this hypothesis, constant-temperature incubation studies (e.g., Janzen 1993b; Plummer et al. 1994) reveal a heightened variance in similar measures of body size when compared to the current experiment. In contrast to developmental rate, body size was most strongly affected by clutch even after accounting for initial egg mass (P 0.05 in all four cases). Strong clutch effects on size of neonatal reptiles are well known, so this result is no surprise (e.g., Shine and Harlow 1996; Shine et al. 1997; Andrews et al. 2000; Packard and Packard 2000; Webb et al. 2001). More unexpected is the lack of a clear temperature effect because: (1) length of incubation was influenced by temperature variance (Table 1), and (2) different constant temperatures elicit significant variation in body size (Janzen 1993b; Plummer et al. 1994). Performance Swimming speed of hatchlings from eggs incubated at a constant 30.5C was comparable to results from prior research on the same population (constant 30C in Janzen 1993b). Overall though, greater fluctuation in incubation temperature resulted in greater swimming speed (Table 1). This result accords with findings for running speed in hatchlings of a lizard (Shine and Harlow 1996). However, neither snakes (Shine et al. 1997; Webb et al. 2001) nor (apparently) A. spinifera (Doody 1999) exposed to greater thermal fluctuations as embryos swam faster as hatchlings. Increased thermal variance during development led to both faster swimming speed and a longer incubation period in this study. These two measures were also positively correlated (Table 2). Because turtles from the C treatment took longest to hatch on average, they may have had more time to mature and thus perform better in trial runs. In contrast, increased variance in incubation temperature led lizards to run faster after hatching, but was also linked to shorter incubation times (Shine and Harlow 1996). However, in light of our swimming-performance results, the interpretation of some findings from prior studies of A. mutica may need to be reconsidered. Because temperatures fluctuate continuously in natural nests (Fig. 1), hatchling A. mutica from past constanttemperature studies (e.g., Janzen 1993b) may actually have performed better if they been reared in the field. In other words, the potential for greater swimming speed was present, but constant incubation temperatures constrained its realization. Righting time in our study is a derivation of the rarely used measure of number of flips to fatigue (but see Doody 1999). While this latter test might measure the endurance of a hatchling, we did not use it because we questioned its ecological relevance. Survival of neonatal reptiles may depend on the first flip or even the first few flips, but little information related directly to survival ability in nature is likely to be revealed by flipping to fatigue. Rather, the speed with which an individual can right itself during a potential predation event seems to be a more ecologically relevant measure of antipredator ability (F.J. Janzen, personal observation), although other traits like burying behavior (Doody 1999) might be important as well. Regardless, righting time was not significantly influenced by clutch, temperature treatment, or the interaction between the two. Righting time did increase with an increasing variance in incubation temperature however (Table 1). Interestingly then, incubation conditions with increased thermal variance produced hatchlings that on average were faster swimmers and slower flippers, but these two variables were not significantly correlated across all turtles. That is, individual turtles that were faster swimmers were not necessarily slower flippers too (Table 2). Prior research on the influence of constant versus fluctuating incubation temperatures on performance variables other than swimming or running speed in neonatal reptiles once again reveals no clear pattern. At intermediate levels of thermal variance, basking time and overall activity levels were maximized in a lizard (Shine and Harlow 1996), whereas motivation (i.e., number of

6 investigator taps to instigate swimming) was minimized and endurance (i.e., number of times an animal surfaced) was maximized in a snake (Shine et al. 1997). Frequency of stopping during swimming trials fell and frequency of hiding during swimming trials rose with increased thermal variance in another snake (Webb et al. 2001). Burying speed was unaffected by thermal variance in A. spinifera (Doody 1999) but, interestingly, posthatching survival of a lizard in the field seemed to be enhanced by increased thermal variance during incubation (see Table 3 of Andrews et al. 2000). The variation in results among experiments again highlights the currently insufficient database for identifying possible generalities in phenotypic responses of reptilian neonates to thermal variance during embryonic development. These problems can be remedied readily by adopting a broadly comparative approach that minimizes methodological differences, another potential explanation for the lack of generalities currently observed. Even so, the insect literature reveals that generalities may be hard to come by (Ratte 1985). Our study is the first designed to examine the effects of both constant and controlled fluctuating temperatures on a wide array of traits in hatchling turtles. A number of experiments in reptiles have recognized the import of thermal variation in addition to mean temperature on embryonic sex determination (e.g., Valenzuela 2001). However, only Georges et al. (1994) directly explored the phenotypic effects of constant and fluctuating temperatures with identical means (on incubation time and sex ratio of hatchling sea turtles); Doody (1999), for example, sought to quantify constant temperature equivalents of fluctuating temperatures found in natural A. spinifera nests. Our results and those of other researchers suggest that, like our increased recognition of the importance of clutch and maternal effects (e.g., Packard and Packard 1993), thermal variance should continue to be accounted for explicitly in studies of embryonic and neonatal reptiles and other organisms. Indeed, future studies of phenotypic variation resulting from incubation-temperature differentiation should attempt to incorporate fluctuating temperature regimes. The resultant data may not only resemble natural variation more closely, but also might change our whole outlook on the biological causes and consequences of phenotypic variation (e.g., Shine and Elphick 2001). Acknowledgements We thank D. Robinson for assistance collecting eggs, J. Krenz and D. Willette for aid in constructing nest protectors, N. Valenzuela for the loan of temperature loggers, M. Knutzen for crucial help tending eggs in the laboratory, A. Bronikowski for statistical advice, and G. Packard, two anonymous reviewers, and members of the Janzen Laboratory for comments on the manuscript. Research was conducted under authority of scientific permit SC from the Iowa Department of Natural Resources. Turtles were handled in accordance with Iowa State University Animal Care protocol J. This project was supported in part by NSF grant DEB to F.J.J. Journal paper no. J of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa, project no. 3369, supported by the Hatch Act and State of Iowa Funds. References 187 Ackerman RA (1994) Temperature, time, and reptile egg water exchange. Israel J Zool 40: Andrews RM, Mathies T, Warner DA (2000) Effect of incubation temperature on morphology, growth, and survival of juvenile Sceloporus undulatus. Herpetol Monogr 14: Billerbeck JM, Schultz ET, Conover DO (2000) Adaptive variation in energy acquisition and allocation among latitudinal populations of the Atlantic silverside. Oecologia 122: Burggren WW, Just JJ (1992) Developmental changes in physiological systems. In: Feder ME, Burggren WW (eds) Environmental physiology of the amphibians. University of Chicago Press, Chicago, pp Choo BL, Chou LM (1987) Effect of temperature on the incubation period and hatchability of Trionyx sinensis Wiegmann eggs. J Herpetol 21: Deeming DC, Ferguson MWJ (1991) Egg incubation: its effects on embryonic development in birds and reptiles. Cambridge University Press, New York Doody JS (1999) A test of the comparative influences of constant and fluctuating incubation temperatures on phenotypes of hatchling turtles. Chel Conserv Biol 3: Ernst CH, Barbour RW, Lovich JE (1994) Turtles of the United States and Canada. Smithsonian Institution Press, Washington, DC Ewert MA (1979) The embryo and its egg: development and natural history. In: Harless M, Morlock H (eds) Turtles: perspectives and research. Wiley, New York, pp Ewert MA (1985) Embryology of turtles. In: Gans C, Billett F, Maderson PFA (eds) Biology of the reptilia, vol 14. Wiley, New York, pp Fitch HS, Plummer MV (1975) A preliminary ecological study of the soft-shelled turtle Trionyx muticus in the Kansas River. Israel J Zool 24:28 42 Garland T Jr (1984) Physiological correlates of locomotory performance in a lizard: an allometric approach. Am J Physiol 247:R806 R815 Garland T Jr (1988) Genetic basis of activity metabolism. I. Inheritance of speed, stamina, and antipredator displays in the garter snake Thamnophis sirtalis. Evolution 42: Garland T Jr, Bennett AF (1990) Quantitative genetics of maximal oxygen consumption in a garter snake. Am J Physiol 259:R986 R992 Georges A, Limpus C, Stoutjesdijk R (1994) Hatchling sex in the marine turtle Caretta caretta is determined by proportion of development at a temperature, not daily duration of exposure. J Exp Zool 270: Hagstrum DW, Milliken GA (1991) Modeling differences in insect developmental times between constant and fluctuating temperatures. Ann Entomol Soc Am 84: Janzen FJ (1993a) An experimental analysis of natural selection on body size of hatchling turtles. Ecology 74: Janzen FJ (1993b) The influence of incubation temperature and family on eggs, embryos, and hatchlings of the smooth softshell turtle (Apalone mutica). Physiol Zool 66: Janzen FJ, Packard GC, Packard MJ, Boardman TJ, zumbrunnen JR (1990) Mobilization of lipid and protein by embryonic snapping turtles in wet and dry environments. J Exp Zool 255: Leshem A, Dmi el R (1986) Water loss from Trionyx triunguis eggs incubating in natural nests. Herpetol J 1: Leshem A, Ar A, Ackerman RA (1991) Growth, water, and energy metabolism of the soft-shelled turtle (Trionyx triunguis) embryo: effects of temperature. Physiol Zool 64: Miller K, Packard GC, Packard MJ (1987) Hydric conditions during incubation influence locomotor performance of hatchling snapping turtles. J Exp Biol 127: Overall KL (1994) Lizard egg environments. In: Vitt LJ, Pianka ER (eds) Lizard ecology: historical and experimental perspectives. Princeton University Press, Princeton, pp 51 72

7 188 Packard GC, Packard MJ (1988) Physiological ecology of reptilian eggs and embryos. In: Gans C, Huey RB (eds) Biology of the reptilia, vol 16. Liss, New York, pp Packard GC, Packard MJ (1993) Sources of variation in laboratory measurements of water relations of reptilian eggs and embryos. Physiol Zool 66: Packard GC, Packard MJ (2000) Developmental plasticity in painted turtles, Chrysemys picta. Funct Ecol 14: Packard GC, Taigen TL, Boardman TJ, Packard MJ, Tracy CR (1979) Changes in mass of softshell turtle (Trionyx spiniferus) eggs incubated on substrates differing in water potential. Herpetologica 35:78 86 Packard GC, Taigen TL, Packard MJ, Boardman TJ (1981) Changes in mass of eggs of softshell turtles (Trionyx spiniferus) incubated under hydric conditions simulating those of natural nests. J Zool 193A:81 90 Packard MJ, Packard GC (1991) Sources of calcium, magnesium, and phosphorus for embryonic softshell turtles (Trionyx spiniferus). J Exp Zool 258: Pennisi E (2002) Good diet hides genetic mutations. Science 296:1011 Plummer MV, Shadrix CE, Cox RC (1994) Thermal limits of incubation in embryos of softshell turtles (Apalone mutica). Chel Conserv Biol 1: Ratte H (1985) Temperature and insect development. In: Hoffman KH (ed) Environmental physiology and biochemistry of insects. Springer, Berlin Heidelberg New York, pp Schrag SJ, Ndifon GT, Read AF (1994) Temperature-determined outcrossing ability in wild populations of a simultaneous hermaphrodite snail. Ecology 75: Shine R, Elphick MJ (2001) The effect of short-term weather fluctuations on temperatures inside lizard nests, and on the phenotypic traits of hatchling lizards. Biol J Linn Soc 72: Shine R, Harlow PS (1996) Maternal manipulation of offspring phenotypes via nest-site selection in an oviparous lizard. Ecology 77: Shine R, Madsen TRL, Elphick MJ, Harlow PS (1997) The influence of nest temperatures and maternal brooding on hatchling phenotypes in water pythons. Ecology 78: Valenzuela N (2001) Constant, shift, and natural temperature effects on sex determination in Podocnemis expansa turtles. Ecology 82: Webb JK, Brown GP, Shine R (2001) Body size, locomotor speed and antipredator behaviour in a tropical snake (Tropidonophis mairii, Colubridae): the influence of incubation environments and genetic factors. Funct Ecol 15: Wyneken J, Salmon M (1992) Frenzy and postfrenzy swimming activity in loggerhead, green, and leatherback hatchling sea turtles. Copeia 1992:

Short-term Water Potential Fluctuations and Eggs of the Red-eared Slider Turtle (Trachemys scripta elegans)

Short-term Water Potential Fluctuations and Eggs of the Red-eared Slider Turtle (Trachemys scripta elegans) Zoology and Genetics Publications Zoology and Genetics 2001 Short-term Water Potential Fluctuations and Eggs of the Red-eared Slider Turtle (Trachemys scripta elegans) John K. Tucker Illinois Natural History

More information

Phenotypic Effects of Thermal Mean and Fluctuations on Embryonic Development and Hatchling Traits in a Lacertid Lizard, Takydromus septentrionalis

Phenotypic Effects of Thermal Mean and Fluctuations on Embryonic Development and Hatchling Traits in a Lacertid Lizard, Takydromus septentrionalis JOURNAL OF EXPERIMENTAL ZOOLOGY 9A:138 146 (08) A Journal of Integrative Biology Phenotypic Effects of Thermal Mean and Fluctuations on Embryonic Development and Hatchling Traits in a Lacertid Lizard,

More information

JEZ Part A: Comparative Experimental Biology. An experimental test of the effects of fluctuating incubation temperatures on hatchling phenotype

JEZ Part A: Comparative Experimental Biology. An experimental test of the effects of fluctuating incubation temperatures on hatchling phenotype An experimental test of the effects of fluctuating incubation temperatures on hatchling phenotype Journal: Manuscript ID: Wiley - Manuscript type: Date Submitted by the Author: JEZ Part A: Physiology and

More information

WATER plays an important role in all stages

WATER plays an important role in all stages Copeia, 2002(1), pp. 220 226 Experimental Analysis of an Early Life-History Stage: Water Loss and Migrating Hatchling Turtles JASON J. KOLBE AND FREDRIC J. JANZEN The effect of water dynamics is well known

More information

Thermal and fitness-related consequences of nest location in Painted Turtles (Chrysemys picta)

Thermal and fitness-related consequences of nest location in Painted Turtles (Chrysemys picta) Functional Ecology 1999 ORIGINAL ARTICLE OA 000 EN Thermal and fitness-related consequences of nest location in Painted Turtles (Chrysemys picta) D. W. WEISROCK and F. J. JANZEN* Department of Zoology

More information

Can natural phenotypic variances be estimated reliably under homogeneous laboratory conditions?

Can natural phenotypic variances be estimated reliably under homogeneous laboratory conditions? doi: 10.1111/j.1420-9101.2007.01343.x Can natural phenotypic variances be estimated reliably under homogeneous laboratory conditions? J. R. ST JULIANA 1 * & F. J. JANZEN *Department of Animal Ecology,

More information

MATERNAL NEST-SITE CHOICE AND OFFSPRING FITNESS IN A TROPICAL SNAKE (TROPIDONOPHIS MAIRII, COLUBRIDAE)

MATERNAL NEST-SITE CHOICE AND OFFSPRING FITNESS IN A TROPICAL SNAKE (TROPIDONOPHIS MAIRII, COLUBRIDAE) Ecology, 85(6), 2004, pp. 1627 1634 2004 by the Ecological Society of America MATERNAL NEST-SITE CHOICE AND OFFSPRING FITNESS IN A TROPICAL SNAKE (TROPIDONOPHIS MAIRII, COLUBRIDAE) G. P. BROWN AND R. SHINE

More information

Effects of nest temperature and moisture on phenotypic traits of hatchling snakes (Tropidonophis mairii, Colubridae) from tropical Australia

Effects of nest temperature and moisture on phenotypic traits of hatchling snakes (Tropidonophis mairii, Colubridae) from tropical Australia Blackwell Publishing LtdOxford, UKBIJBiological Journal of the Linnean Society24-466The Linnean Society of London, 26? 26 891 159168 Original Article INCUBATION EFFECTS IN A SNAKE G. P. BROWN and R. SHINE

More information

phenotypes of hatchling lizards, regardless of overall mean incubation temperature

phenotypes of hatchling lizards, regardless of overall mean incubation temperature Functional Ecology 2004 Seasonal shifts in nest temperature can modify the Blackwell Publishing, Ltd. phenotypes of hatchling lizards, regardless of overall mean incubation temperature R. SHINE* Biological

More information

Consequences of Extended Egg Retention in the Eastern Fence Lizard (Sceloporus undulatus)

Consequences of Extended Egg Retention in the Eastern Fence Lizard (Sceloporus undulatus) Journal of Herpetology, Vol. 37, No. 2, pp. 309 314, 2003 Copyright 2003 Society for the Study of Amphibians and Reptiles Consequences of Extended Egg Retention in the Eastern Fence Lizard (Sceloporus

More information

and hydration of hatchling Painted Turtles, Chrysemys picta

and hydration of hatchling Painted Turtles, Chrysemys picta Functional Ecology 21 Environmentally induced variation in size, energy reserves Blackwell Science, Ltd and hydration of hatchling Painted Turtles, Chrysemys picta G. C. PACKARD and M. J. PACKARD Colorado

More information

Does Variation in Soil Water Content Induce Variation in the Size of Hatchling Snapping Turtles (Chelydra serpentina)? MICHAEL S.

Does Variation in Soil Water Content Induce Variation in the Size of Hatchling Snapping Turtles (Chelydra serpentina)? MICHAEL S. Copeia, 2006(4), pp. 769 777 Does Variation in Soil Water Content Induce Variation in the Size of Hatchling Snapping Turtles (Chelydra serpentina)? MICHAEL S. FINKLER Most studies that have investigated

More information

Developmental environment has long-lasting effects on behavioural performance in two turtles with environmental sex determination

Developmental environment has long-lasting effects on behavioural performance in two turtles with environmental sex determination Evolutionary Ecology Research, 2004, 6: 739 747 Developmental environment has long-lasting effects on behavioural performance in two turtles with environmental sex determination Steven Freedberg,* Amanda

More information

THE adaptive significance, if any, of temperature-dependent

THE adaptive significance, if any, of temperature-dependent Copeia, 2003(2), pp. 366 372 Nest Temperature Is Not Related to Egg Size in a Turtle with Temperature-Dependent Sex Determination CARRIE L. MORJAN AND FREDRIC J. JANZEN A recent hypothesis posits that

More information

The influence of propagule size and maternal nest-site. selection on survival and behaviour of neonate turtles. J. J. KOLBE* and F. J.

The influence of propagule size and maternal nest-site. selection on survival and behaviour of neonate turtles. J. J. KOLBE* and F. J. Functional Ecology 2001 The influence of propagule size and maternal nest-site Blackwell Science Ltd selection on survival and behaviour of neonate turtles J. J. KOLBE* and F. J. JANZEN Department of Zoology

More information

Egg environments have large effects on embryonic development, but have minimal consequences for hatchling phenotypes in an invasive lizard

Egg environments have large effects on embryonic development, but have minimal consequences for hatchling phenotypes in an invasive lizard 25..41 Biological Journal of the Linnean Society, 2012, 105, 25 41. With 6 figures Egg environments have large effects on embryonic development, but have minimal consequences for hatchling phenotypes in

More information

Phenotypic Responses of Hatchlings to Constant Versus Fluctuating Incubation Temperatures in the Multi-banded Krait, Bungarus multicintus (Elapidae)

Phenotypic Responses of Hatchlings to Constant Versus Fluctuating Incubation Temperatures in the Multi-banded Krait, Bungarus multicintus (Elapidae) ZOOLOGICAL SCIENCE 24: 384 390 (2007) 2007 Zoological Society of Japan Phenotypic Responses of Hatchlings to Constant Versus Fluctuating Incubation Temperatures in the Multi-banded Krait, Bungarus multicintus

More information

Like mother, like daughter: inheritance of nest-site

Like mother, like daughter: inheritance of nest-site Like mother, like daughter: inheritance of nest-site location in snakes Gregory P. Brown and Richard Shine* School of Biological Sciences A0, University of Sydney, NSW 00, Australia *Author for correspondence

More information

Nest depth may not compensate for sex ratio skews caused by climate change in turtles

Nest depth may not compensate for sex ratio skews caused by climate change in turtles bs_bs_banner Animal Conservation. Print ISSN 1367-9430 FEATURE PAPER Nest depth may not compensate for sex ratio skews caused by climate change in turtles J. M. Refsnider, B. L. Bodensteiner, J. L. Reneker

More information

Geographic variation in lizard phenotypes: importance of the incubation environment

Geographic variation in lizard phenotypes: importance of the incubation environment Biological Journal of the Linnean Society (1998), 64: 477 491. With 3 figures Article ID: bj980236 Geographic variation in lizard phenotypes: importance of the incubation environment FIONA J. QUALLS AND

More information

FEMALE PHENOTYPE, LIFE HISTORY, AND REPRODUCTIVE SUCCESS IN FREE-RANGING SNAKES (TROPIDONOPHIS MAIRII)

FEMALE PHENOTYPE, LIFE HISTORY, AND REPRODUCTIVE SUCCESS IN FREE-RANGING SNAKES (TROPIDONOPHIS MAIRII) Ecology, 86(10), 2005, pp. 2763 2770 2005 by the Ecological Society of America FEMALE PHENOTYPE, LIFE HISTORY, AND REPRODUCTIVE SUCCESS IN FREE-RANGING SNAKES (TROPIDONOPHIS MAIRII) G. P. BROWN AND R.

More information

PHENOTYPES AND SURVIVAL OF HATCHLING LIZARDS. Daniel A. Warner. MASTER OF SCIENCE in Biology

PHENOTYPES AND SURVIVAL OF HATCHLING LIZARDS. Daniel A. Warner. MASTER OF SCIENCE in Biology PHENOTYPES AND SURVIVAL OF HATCHLING LIZARDS Daniel A. Warner Thesis submitted to the Faculty of Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree

More information

Maternally chosen nest sites positively affect multiple components of offspring fitness in a lizard

Maternally chosen nest sites positively affect multiple components of offspring fitness in a lizard Advance Access published August 29, 2012 doi:10.1093/beheco/ars133 Original Article Maternally chosen nest sites positively affect multiple components of offspring fitness in a lizard Aaron M. Reedy, a

More information

Social and Thermal Cues Influence Nest-site Selection in a Nocturnal Gecko, Oedura lesueurii

Social and Thermal Cues Influence Nest-site Selection in a Nocturnal Gecko, Oedura lesueurii RESEARCH PAPER Social and Thermal Cues Influence Nest-site Selection in a Nocturnal Gecko, Oedura lesueurii David A. Pike*, Jonathan K. Webb* & Robin M. Andrews * School of Biological Sciences A08, University

More information

DOES VIVIPARITY EVOLVE IN COLD CLIMATE REPTILES BECAUSE PREGNANT FEMALES MAINTAIN STABLE (NOT HIGH) BODY TEMPERATURES?

DOES VIVIPARITY EVOLVE IN COLD CLIMATE REPTILES BECAUSE PREGNANT FEMALES MAINTAIN STABLE (NOT HIGH) BODY TEMPERATURES? Evolution, 58(8), 2004, pp. 1809 1818 DOES VIVIPARITY EVOLVE IN COLD CLIMATE REPTILES BECAUSE PREGNANT FEMALES MAINTAIN STABLE (NOT HIGH) BODY TEMPERATURES? RICHARD SHINE School of Biological Sciences,

More information

University of Canberra. This thesis is available in print format from the University of Canberra Library.

University of Canberra. This thesis is available in print format from the University of Canberra Library. University of Canberra This thesis is available in print format from the University of Canberra Library. If you are the author of this thesis and wish to have the whole thesis loaded here, please contact

More information

Incubation temperature and phenotypic traits of Sceloporus undulatus: implications for the northern limits of distribution

Incubation temperature and phenotypic traits of Sceloporus undulatus: implications for the northern limits of distribution DOI 10.1007/s00442-006-0583-0 ECOPHYSIOLOGY Incubation temperature and phenotypic traits of Sceloporus undulatus: implications for the northern limits of distribution Scott L. Parker Æ Robin M. Andrews

More information

Wen SHEN 1, Jianchi PEI 2, Longhui LIN 3* and Xiang JI Introduction

Wen SHEN 1, Jianchi PEI 2, Longhui LIN 3* and Xiang JI Introduction Asian Herpetological Research 2017, 8(4): 262 268 DOI: 10.16373/j.cnki.ahr.170029 ORIGINAL ARTICLE Effects of Constant versus Fluctuating Incubation Temperatures on Hatching Success, Incubation Length,

More information

Influence of Incubation Temperature on Morphology, Locomotor Performance, and Early Growth of Hatchling Wall Lizards (Podarcis muralis)

Influence of Incubation Temperature on Morphology, Locomotor Performance, and Early Growth of Hatchling Wall Lizards (Podarcis muralis) JEZ 0774 422 F. BRAÑA JOURNAL AND OF X. JI EXPERIMENTAL ZOOLOGY 286:422 433 (2000) Influence of Incubation Temperature on Morphology, Locomotor Performance, and Early Growth of Hatchling Wall Lizards (Podarcis

More information

Is Parental Care the Key to Understanding Endothermy in Birds and Mammals?

Is Parental Care the Key to Understanding Endothermy in Birds and Mammals? vol. 162, no. 6 the american naturalist december 2003 Is Parental Care the Key to Understanding Endothermy in Birds and Mammals? Michael J. Angilletta, Jr., * and Michael W. Sears Department of Life Sciences,

More information

Environmental effects on fitness and consequences for sex allocation in a reptile with environmental sex determination

Environmental effects on fitness and consequences for sex allocation in a reptile with environmental sex determination Evolutionary Ecology Research, 2001, 3: 953 967 Environmental effects on fitness and consequences for sex allocation in a reptile with environmental sex determination Steven Freedberg,* Michael A. Ewert

More information

EGG size and composition can be the target

EGG size and composition can be the target Copeia, 2005(2), pp. 417 423 Egg Component Comparisons within and among Clutches of the Diamondback Terrapin, Malaclemys terrapin WILLEM M. ROOSENBURG AND TERESA DENNIS The relationship between egg size

More information

Rookery on the east coast of Penins. Author(s) ABDULLAH, SYED; ISMAIL, MAZLAN. Proceedings of the International Sy

Rookery on the east coast of Penins. Author(s) ABDULLAH, SYED; ISMAIL, MAZLAN. Proceedings of the International Sy Temperature dependent sex determina Titleperformance of green turtle (Chelon Rookery on the east coast of Penins Author(s) ABDULLAH, SYED; ISMAIL, MAZLAN Proceedings of the International Sy Citation SEASTAR2000

More information

Thermal adaptation of maternal and embryonic phenotypes in a geographically widespread ectotherm

Thermal adaptation of maternal and embryonic phenotypes in a geographically widespread ectotherm International Congress Series 1275 (2004) 258 266 www.ics-elsevier.com Thermal adaptation of maternal and embryonic phenotypes in a geographically widespread ectotherm Michael J. Angilletta Jr. a, *, Christopher

More information

, SHUI-YU FU 2, magnesium from the yolk but withdraw approximately 35.6% of their total calcium requirements from the eggshell.

, SHUI-YU FU 2, magnesium from the yolk but withdraw approximately 35.6% of their total calcium requirements from the eggshell. 1999 Asiatic Herpetological Research Vol. 8, pp. 53-59 Utilization of Energy and Material in Eggs and Post-hatching Yolk in an Oviparous Snake, Elaphe taeniura XlANG Jl', PlNG-YUE SUN 1, SHUI-YU FU 2,

More information

Nest-site selection in Eastern hognose snakes (Heterodon platirhinos) Casey Peet-Paré

Nest-site selection in Eastern hognose snakes (Heterodon platirhinos) Casey Peet-Paré Nest-site selection in Eastern hognose snakes (Heterodon platirhinos) by Casey Peet-Paré Thesis submitted to the Department of Biology in partial fulfillment of the requirements for the B.Sc. Honours degree,

More information

PHYSIOLOGICAL AND ECOLOGICAL CONSTRAINTS ON THE EVOLUTION OF VIVIPARITY IN SCELOPORINE LIZARDS. Scott L. Parker

PHYSIOLOGICAL AND ECOLOGICAL CONSTRAINTS ON THE EVOLUTION OF VIVIPARITY IN SCELOPORINE LIZARDS. Scott L. Parker PHYSIOLOGICAL AND ECOLOGICAL CONSTRAINTS ON THE EVOLUTION OF VIVIPARITY IN SCELOPORINE LIZARDS Scott L. Parker Dissertation submitted to the faculty of Virginia Polytechnic Institute and State University

More information

Phenotypic and fitness consequences of maternal nest-site choice across multiple early life stages

Phenotypic and fitness consequences of maternal nest-site choice across multiple early life stages Ecology, Evolution and Organismal Biology Publications Ecology, Evolution and Organismal Biology 2-2013 Phenotypic and fitness consequences of maternal nest-site choice across multiple early life stages

More information

Effects of early incubation constancy on embryonic development: An experimental study in the herring gull Larus argentatus

Effects of early incubation constancy on embryonic development: An experimental study in the herring gull Larus argentatus Journal of Thermal Biology 31 (2006) 416 421 www.elsevier.com/locate/jtherbio Effects of early incubation constancy on embryonic development: An experimental study in the herring gull Larus argentatus

More information

Seasonal Shifts in Reproductive Investment of Female Northern Grass Lizards ( Takydromus septentrionalis

Seasonal Shifts in Reproductive Investment of Female Northern Grass Lizards ( Takydromus septentrionalis Seasonal Shifts in Reproductive Investment of Female Northern Grass Lizards (Takydromus septentrionalis) from a Field Population on Beiji Island, China Author(s): Wei-Guo Du and Lu Shou Source: Journal

More information

THE concept that reptiles have preferred

THE concept that reptiles have preferred Copeia, 2000(3), pp. 841 845 Plasticity in Preferred Body Temperature of Young Snakes in Response to Temperature during Development GABRIEL BLOUIN-DEMERS, KELLEY J. KISSNER, AND PATRICK J. WEATHERHEAD

More information

Incubation temperature affects hatchling growth but not sexual phenotype in the Chinese soft-shelled turtle, Pelodiscus sinensis (Trionychidae)

Incubation temperature affects hatchling growth but not sexual phenotype in the Chinese soft-shelled turtle, Pelodiscus sinensis (Trionychidae) J. Zool., Lond. (2003) 261, 409 416 C 2003 The Zoological Society of London Printed in the United Kingdom DOI:10.1017/S0952836903004266 Incubation temperature affects hatchling growth but not sexual phenotype

More information

D. Burke \ Oceans First, Issue 3, 2016, pgs

D. Burke \ Oceans First, Issue 3, 2016, pgs Beach Shading: A tool to mitigate the effects of climate change on sea turtles Daniel Burke, Undergraduate Student, Dalhousie University Abstract Climate change may greatly impact sea turtles as rising

More information

Use of Posthatching Yolk and External Forage to Maximize Early Growth in Apalone mutica Hatchlings

Use of Posthatching Yolk and External Forage to Maximize Early Growth in Apalone mutica Hatchlings Journal of Herpetology, Vol. 41, No. 3, pp. 492 500, 2007 Copyright 2007 Society for the Study of Amphibians and Reptiles Use of Posthatching Yolk and External Forage to Maximize Early Growth in Apalone

More information

Effects of Incubation Temperature on Growth and Performance of the Veiled Chameleon (Chamaeleo calyptratus)

Effects of Incubation Temperature on Growth and Performance of the Veiled Chameleon (Chamaeleo calyptratus) JOURNAL OF EXPERIMENTAL ZOOLOGY 309A:435 446 (2008) A Journal of Integrative Biology Effects of Incubation Temperature on Growth and Performance of the Veiled Chameleon (Chamaeleo calyptratus) ROBIN M.

More information

EMBRYONIC TEMPERATURE INFLUENCES JUVENILE TEMPERATURE CHOICE AND GROWTH RATE IN SNAPPING TURTLES CHELYDRA SERPENTINA

EMBRYONIC TEMPERATURE INFLUENCES JUVENILE TEMPERATURE CHOICE AND GROWTH RATE IN SNAPPING TURTLES CHELYDRA SERPENTINA The Journal of Experimental Biology 201, 439 449 (1998) Printed in Great Britain The Company of Biologists Limited 1998 JEB1372 439 EMBRYONIC TEMPERATURE INFLUENCES JUVENILE TEMPERATURE CHOICE AND GROWTH

More information

Hydric conditions during incubation influence phenotypes of neonatal reptiles in the field

Hydric conditions during incubation influence phenotypes of neonatal reptiles in the field Ecology, Evolution and Organismal Biology Publications Ecology, Evolution and Organismal Biology 2015 Hydric conditions during incubation influence phenotypes of neonatal reptiles in the field Brooke L.

More information

Rigid Shells Enhance Survival of Gekkotan Eggs

Rigid Shells Enhance Survival of Gekkotan Eggs RESEARCH ARTICLE Rigid Shells Enhance Survival of Gekkotan Eggs ROBIN M. ANDREWS* Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia ABSTRACT 323A:607 615, 2015 The majority of lizards

More information

Ecological Archives E A2

Ecological Archives E A2 Ecological Archives E089-034-A2 David A. Pike, Ligia Pizzatto, Brian A. Pike, and Richard Shine. 2008. Estimating survival rates of uncatchable animals: the myth high juvenile mortality in reptiles. Ecology

More information

The significance of predation in nest site selection of turtles: an experimental consideration of macro- and microhabitat preferences

The significance of predation in nest site selection of turtles: an experimental consideration of macro- and microhabitat preferences OIKOS 102: 592 600, 2003 The significance of predation in nest site selection of turtles: an experimental consideration of macro- and microhabitat preferences Ricky-John Spencer and Michael B. Thompson

More information

ACTIVITY #6: TODAY S PICNIC SPECIALS ARE

ACTIVITY #6: TODAY S PICNIC SPECIALS ARE TOPIC What types of food does the turtle eat? ACTIVITY #6: TODAY S PICNIC SPECIALS ARE BACKGROUND INFORMATION For further information, refer to Turtles of Ontario Fact Sheets (pages 10-26) and Unit Five:

More information

SNAPPING turtles (Chelydra serpentina) of various

SNAPPING turtles (Chelydra serpentina) of various Copeia, 2001(2), pp. 521 525 Rates of Water Loss and Estimates of Survival Time under Varying Humidity in Juvenile Snapping Turtles (Chelydra serpentina) MICHAEL S. FINKLER Juvenile snapping turtles may

More information

LookSmart's FindArticles - Ecology: Nest-site selection: microhabitat variation and its... Page 1 of 13

LookSmart's FindArticles - Ecology: Nest-site selection: microhabitat variation and its... Page 1 of 13 LookSmart's FindArticles - Ecology: Nest-site selection: microhabitat variation and its... Page 1 of 13 http://www.looksmart.com/ http://www.findarticles.com/ FindArticles > Ecology > Sept, 1998 > Article

More information

The effects of diet upon pupal development and cocoon formation by the cat flea (Siphonaptera: Pulicidae)

The effects of diet upon pupal development and cocoon formation by the cat flea (Siphonaptera: Pulicidae) June, 2002 Journal of Vector Ecology 39 The effects of diet upon pupal development and cocoon formation by the cat flea (Siphonaptera: Pulicidae) W. Lawrence and L. D. Foil Department of Entomology, Louisiana

More information

A Survey of Aquatic Turtles at Kickapoo State Park and Middle Fork State Fish and Wildlife Area (MFSFWA)

A Survey of Aquatic Turtles at Kickapoo State Park and Middle Fork State Fish and Wildlife Area (MFSFWA) Transactions of the Illinois State Academy of Science received 7/20/07 (2008), Volume 101, #1&2, pp. 107-112 accepted 2/18/08 A Survey of Aquatic Turtles at Kickapoo State Park and Middle Fork State Fish

More information

Natural History Note

Natural History Note vol. 176, no. 4 the american naturalist october 2010 Natural History Note The Physiological Basis of Geographic Variation in Rates of Embryonic Development within a Widespread Lizard Species Wei-Guo Du,

More information

Age and Season Impact Resource Allocation to Eggs and Nesting Behavior in the Painted Turtle

Age and Season Impact Resource Allocation to Eggs and Nesting Behavior in the Painted Turtle 996 Age and Season Impact Resource Allocation to Eggs and Nesting Behavior in the Painted Turtle Heidi K. Harms 1,2, * Ryan T. Paitz 1,2, Rachel M. Bowden 1,2, Fredric J. Janzen 1, 1 Department of Ecology,

More information

Weaver Dunes, Minnesota

Weaver Dunes, Minnesota Hatchling Orientation During Dispersal from Nests Experimental analyses of an early life stage comparing orientation and dispersal patterns of hatchlings that emerge from nests close to and far from wetlands

More information

Reproductive physiology and eggs

Reproductive physiology and eggs Reproductive physiology and eggs Class Business Reading for this lecture Required. Gill: Chapter 14 1. Reproductive physiology In lecture I will only have time to go over reproductive physiology briefly,

More information

Maternal Effects in the Green Turtle (Chelonia mydas)

Maternal Effects in the Green Turtle (Chelonia mydas) Maternal Effects in the Green Turtle (Chelonia mydas) SUBMITTED BY SAM B. WEBER TO THE UNIVERSITY OF EXETER AS A THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOLOGY; 8 TH JUNE 2010 This thesis is

More information

Phenotypic and fitness consequences of maternal nest-site choice across multiple early life stages

Phenotypic and fitness consequences of maternal nest-site choice across multiple early life stages Ecology, 94(2), 2013, pp. 336 345 Ó 2013 by the Ecological Society of America Phenotypic and fitness consequences of maternal nest-site choice across multiple early life stages TIMOTHY S. MITCHELL, 1 DANIEL

More information

Latent Effects of Egg Incubation Temperature on Growth in the Lizard Anolis carolinensis

Latent Effects of Egg Incubation Temperature on Growth in the Lizard Anolis carolinensis JOURNAL OF EXPERIMENTAL ZOOLOGY 309A (2008) A Journal of Integrative Biology Latent Effects of Egg Incubation Temperature on Growth in the Lizard Anolis carolinensis RACHEL M. GOODMAN Department of Ecology

More information

Who Really Owns the Beach? The Competition Between Sea Turtles and the Coast Renee C. Cohen

Who Really Owns the Beach? The Competition Between Sea Turtles and the Coast Renee C. Cohen Who Really Owns the Beach? The Competition Between Sea Turtles and the Coast Renee C. Cohen Some Common Questions Microsoft Word Document This is an outline of the speaker s notes in Word What are some

More information

Do TSD, sex ratios, and nest characteristics influence the vulnerability of tuatara to global warming?

Do TSD, sex ratios, and nest characteristics influence the vulnerability of tuatara to global warming? International Congress Series 1275 (2004) 250 257 www.ics-elsevier.com Do TSD, sex ratios, and nest characteristics influence the vulnerability of tuatara to global warming? Nicola J. Nelson a, *, Michael

More information

Sex-based hatching asynchrony in an oviparous lizard (Bassiana duperreyi, Scincidae)

Sex-based hatching asynchrony in an oviparous lizard (Bassiana duperreyi, Scincidae) Austral Ecology (2007) 32, 502 508 doi:10.1111/j.1442-9993.2007.01722.x Sex-based hatching asynchrony in an oviparous lizard (Bassiana duperreyi, Scincidae) RAJKUMAR S. RADDER AND RICHARD SHINE* School

More information

*Author for correspondence Accepted 13 December 2011

*Author for correspondence Accepted 13 December 2011 1346 The Journal of Experimental Biology 215, 1346-1353 2012. Published by The Company of Biologists Ltd doi:10.1242/jeb.059113 RESEARCH ARTICLE Maternal influences on early development: preferred temperature

More information

Effects of Thermal and Hydric Conditions on Egg Incubation and Hatchling Phenotypes in Two Phrynocephalus Lizards

Effects of Thermal and Hydric Conditions on Egg Incubation and Hatchling Phenotypes in Two Phrynocephalus Lizards Asian Herpetological Research 2012, 3(3): 184 191 DOI: 10.3724/SP.J.1245.2012.00184 Effects of Thermal and Hydric Conditions on Egg Incubation and Hatchling Phenotypes in Two Phrynocephalus Lizards Xiaolong

More information

REPORT OF ACTIVITIES TURTLE ECOLOGY RESEARCH REPORT Crescent Lake National Wildlife Refuge 31 May to 4 July 2017

REPORT OF ACTIVITIES TURTLE ECOLOGY RESEARCH REPORT Crescent Lake National Wildlife Refuge 31 May to 4 July 2017 REPORT OF ACTIVITIES 2017 TURTLE ECOLOGY RESEARCH REPORT Crescent Lake National Wildlife Refuge 31 May to 4 July 2017 A report submitted to Refuge Biologist Marlin French 15 July 2017 John B Iverson Dept.

More information

Title of Project: Distribution of the Collared Lizard, Crotophytus collaris, in the Arkansas River Valley and Ouachita Mountains

Title of Project: Distribution of the Collared Lizard, Crotophytus collaris, in the Arkansas River Valley and Ouachita Mountains Title of Project: Distribution of the Collared Lizard, Crotophytus collaris, in the Arkansas River Valley and Ouachita Mountains Project Summary: This project will seek to monitor the status of Collared

More information

ECONOMIC studies have shown definite

ECONOMIC studies have shown definite The Inheritance of Egg Shell Color W. L. BLOW, C. H. BOSTIAN AND E.^W. GLAZENER North Carolina State College, Raleigh, N. C. ECONOMIC studies have shown definite consumer preference based on egg shell

More information

Selection for Egg Mass in the Domestic Fowl. 1. Response to Selection

Selection for Egg Mass in the Domestic Fowl. 1. Response to Selection Selection for Egg Mass in the Domestic Fowl. 1. Response to Selection H. L. MARKS US Department of Agriculture, Science & Education Administration, Agricultural Research, uthern Regional Poultry Breeding

More information

Amniote Relationships. Reptilian Ancestor. Reptilia. Mesosuarus freshwater dwelling reptile

Amniote Relationships. Reptilian Ancestor. Reptilia. Mesosuarus freshwater dwelling reptile Amniote Relationships mammals Synapsida turtles lizards,? Anapsida snakes, birds, crocs Diapsida Reptilia Amniota Reptilian Ancestor Mesosuarus freshwater dwelling reptile Reptilia General characteristics

More information

DECREASED SPRINT SPEED AS A COST OF REPRODUCTION IN THE LIZARD SCELOPORUS OCCIDENTALS: VARIATION AMONG POPULATIONS

DECREASED SPRINT SPEED AS A COST OF REPRODUCTION IN THE LIZARD SCELOPORUS OCCIDENTALS: VARIATION AMONG POPULATIONS J. exp. Biol. 155, 323-336 (1991) 323 Printed in Great Britain The Company of Biologists Limited 1991 DECREASED SPRINT SPEED AS A COST OF REPRODUCTION IN THE LIZARD SCELOPORUS OCCIDENTALS: VARIATION AMONG

More information

What s new in 2017 for TSD? Marc Girondot

What s new in 2017 for TSD? Marc Girondot What s new in 2017 for TSD? Marc Girondot Temperature effect on embryo growth Morales-Merida, B. A., Bustamante, D. M., Monsinjon, J. & Girondot, M. (2018) Reaction norm of embryo growth rate dependent

More information

First Report of Twinning in the Haw. Author(s) JUNCHOMPOO, CHALATIP; PENPIAN, CHAT

First Report of Twinning in the Haw. Author(s) JUNCHOMPOO, CHALATIP; PENPIAN, CHAT First Report of Twinning in the Haw Title(Eretmochelys imbricata) from Khram Province, Thailand Author(s) JUNCHOMPOO, CHALATIP; PENPIAN, CHAT PROCEEDINGS of the Design Symposium Citation Ecosystem (2013)

More information

Experimental analysis of an early life-history stage: avian predation selects for larger body size of hatchling turtles

Experimental analysis of an early life-history stage: avian predation selects for larger body size of hatchling turtles Experimental analysis of an early life-history stage: avian predation selects for larger body size of hatchling turtles F. J. JANZEN,* J. K. TUCKER &G.L.PAUKSTISà *Department of Zoology and Genetics, Iowa

More information

A description of an Indo-Chinese rat snake (Ptyas korros [Schlegel, 1837]) clutch, with notes on an instance of twinning

A description of an Indo-Chinese rat snake (Ptyas korros [Schlegel, 1837]) clutch, with notes on an instance of twinning 1 2 A description of an Indo-Chinese rat snake (Ptyas korros [Schlegel, 1837]) clutch, with notes on an instance of twinning 3 4 Simon Dieckmann 1, Gerrut Norval 2 * and Jean-Jay Mao 3 5 6 7 8 9 10 11

More information

Softshell Turtle Habitats Potentially Impacted by USACE Reservoir Operations

Softshell Turtle Habitats Potentially Impacted by USACE Reservoir Operations Softshell Turtle Habitats Potentially Impacted by USACE Reservoir Operations BACKGROUND: Changing water levels or other operations at U.S. Army Corps of Engineers (USACE) reservoirs may impact critical

More information

Testing the Persistence of Phenotypic Plasticity After Incubation in the Western Fence Lizard, Sceloporus Occidentalis

Testing the Persistence of Phenotypic Plasticity After Incubation in the Western Fence Lizard, Sceloporus Occidentalis Claremont Colleges Scholarship @ Claremont All HMC Faculty Publications and Research HMC Faculty Scholarship 1-1-2007 Testing the Persistence of Phenotypic Plasticity After Incubation in the Western Fence

More information

INDIVIDUAL IDENTIFICATION OF GREEN TURTLE (CHELONIA MYDAS) HATCHLINGS

INDIVIDUAL IDENTIFICATION OF GREEN TURTLE (CHELONIA MYDAS) HATCHLINGS INDIVIDUAL IDENTIFICATION OF GREEN TURTLE (CHELONIA MYDAS) HATCHLINGS Ellen Ariel, Loïse Corbrion, Laura Leleu and Jennifer Brand Report No. 15/55 Page i INDIVIDUAL IDENTIFICATION OF GREEN TURTLE (CHELONIA

More information

Variation of Chicken Embryo Development by Temperature Influence. Anna Morgan Miller. Rockdale Magnet School for Science and Technology

Variation of Chicken Embryo Development by Temperature Influence. Anna Morgan Miller. Rockdale Magnet School for Science and Technology Variation of Chicken Embryo Development by Temperature Influence Anna Morgan Miller Rockdale Magnet School for Science and Technology Anna Morgan Miller Rockdale Magnet School 1174 Bulldog Circle Conyers,

More information

Embryonic responses to variation in oviductal oxygen in the lizard Sceloporus undulatus from New Jersey and South Carolina, USA

Embryonic responses to variation in oviductal oxygen in the lizard Sceloporus undulatus from New Jersey and South Carolina, USA Blackwell Science, LtdOxford, UKBIJBiological Journal of the Linnean Society0024-4066The Linnean Society of London, 2004? 2004 83? 289299 Original Article Biological Journal of the Linnean Society, 2004,

More information

INCUBATION AND VITAL MORPHOLOGICAL TRAITS IN EGGS FROM AGE-RELATED TURKEYS

INCUBATION AND VITAL MORPHOLOGICAL TRAITS IN EGGS FROM AGE-RELATED TURKEYS Trakia Journal of Sciences, Vol. 7, No. 1, pp 63-67, 2009 Copyright 2009 Trakia University Available online at: http://www.uni-sz.bg ISSN 1313-7050 (print) ISSN 1313-3551 (online) Original Contribution

More information

EDUCATION AND PRODUCTION. Layer Performance of Four Strains of Leghorn Pullets Subjected to Various Rearing Programs

EDUCATION AND PRODUCTION. Layer Performance of Four Strains of Leghorn Pullets Subjected to Various Rearing Programs EDUCATION AND PRODUCTION Layer Performance of Four Strains of Leghorn Pullets Subjected to Various Rearing Programs S. LEESON, L. CASTON, and J. D. SUMMERS Department of Animal and Poultry Science, University

More information

Metabolic Heating and the Prediction of Sex Ratios for Green Turtles (Chelonia mydas)

Metabolic Heating and the Prediction of Sex Ratios for Green Turtles (Chelonia mydas) 161 Metabolic Heating and the Prediction of Sex Ratios for Green Turtles (Chelonia mydas) Annette C. Broderick * Brendan J. Godley Graeme C. Hays Marine Turtle Research Group, School of Biological Sciences,

More information

Evidence of divergent growth rates among populations of the lizard Anolis carolinensis based on experimental manipulations of egg size

Evidence of divergent growth rates among populations of the lizard Anolis carolinensis based on experimental manipulations of egg size Popul Ecol (2010) 52:113 122 DOI 10.1007/s10144-009-0167-z ORIGINAL ARTICLE Evidence of divergent growth rates among populations of the lizard Anolis carolinensis based on experimental manipulations of

More information

Biology. Slide 1of 50. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1of 50. End Show. Copyright Pearson Prentice Hall Biology 1of 50 2of 50 Phylogeny of Chordates Nonvertebrate chordates Jawless fishes Sharks & their relatives Bony fishes Reptiles Amphibians Birds Mammals Invertebrate ancestor 3of 50 A vertebrate dry,

More information

Egg mass determines hatchling size, and incubation temperature influences post-hatching growth, of tuatara Sphenodon punctatus

Egg mass determines hatchling size, and incubation temperature influences post-hatching growth, of tuatara Sphenodon punctatus J. Zool., Lond. (2004) 263, 77 87 C 2004 The Zoological Society of London Printed in the United Kingdom DOI:10.1017/S095283690400490X Egg mass determines hatchling size, and incubation temperature influences

More information

Growth and Development. Embryonic development 2/22/2018. Timing of hatching. Hatching. Young birds and their parents

Growth and Development. Embryonic development 2/22/2018. Timing of hatching. Hatching. Young birds and their parents Growth and Development Young birds and their parents Embryonic development From fertilization to hatching, the embryo undergoes sequence of 42 distinct developmental stages The first 33 stages vary little

More information

CHELONIAN CONSERVATION AND BIOLOGY International Journal of Turtle and Tortoise Research

CHELONIAN CONSERVATION AND BIOLOGY International Journal of Turtle and Tortoise Research CHELONIAN CONSERVATION AND BIOLOGY International Journal of Turtle and Tortoise Research Growth in Kyphotic Ringed Sawbacks, Graptemys oculifera (Testudines: Emydidae) WILL SELMAN 1,2 AND ROBERT L. JONES

More information

The righting response as a fitness index in freshwater turtles

The righting response as a fitness index in freshwater turtles Blackwell Publishing LtdOxford, UKBIJBiological Journal of the Linnean Society0024-4066 2007 The Linnean Society of London? 2007 91? 99109 Original Articles PERFORMANCE AND FITNESS IN TURTLES V. DELMAS

More information

How Does Photostimulation Age Alter the Interaction Between Body Size and a Bonus Feeding Program During Sexual Maturation?

How Does Photostimulation Age Alter the Interaction Between Body Size and a Bonus Feeding Program During Sexual Maturation? 16 How Does Photostimulation Age Alter the Interaction Between Body Size and a Bonus Feeding Program During Sexual Maturation? R A Renema*, F E Robinson*, and J A Proudman** *Alberta Poultry Research Centre,

More information

Experimental assessment of winter conditions on turtle nesting behaviour

Experimental assessment of winter conditions on turtle nesting behaviour Evolutionary Ecology Research, 2017, 18: 271 280 Experimental assessment of winter conditions on turtle nesting behaviour Timothy S. Mitchell 1,4, Jeanine M. Refsnider 1,2, Arun Sethuraman 1,3, Daniel

More information

Station 1 1. (3 points) Identification: Station 2 6. (3 points) Identification:

Station 1 1. (3 points) Identification: Station 2 6. (3 points) Identification: SOnerd s 2018-2019 Herpetology SSSS Test 1 SOnerd s SSSS 2018-2019 Herpetology Test Station 20 sounds found here: https://drive.google.com/drive/folders/1oqrmspti13qv_ytllk_yy_vrie42isqe?usp=sharing Station

More information

Brooke L. Bodensteiner 251 Bessey Hall Iowa State University, Ames, IA

Brooke L. Bodensteiner 251 Bessey Hall Iowa State University, Ames, IA Brooke L. Bodensteiner 251 Bessey Hall Iowa State University, Ames, IA 50014 Email: bodenbro@iastate.edu http://brookebodensteiner.weebly.com/ Education 2017 (expected) M.S. in Ecology and Evolutionary

More information

Proceedings of the 2nd Internationa. SEASTAR2000 Workshop) (2005):

Proceedings of the 2nd Internationa. SEASTAR2000 Workshop) (2005): TitleSeasonal nesting of green turtles a Author(s) YASUDA, TOHYA; KITTIWATTANAWONG, KO KLOM-IN, WINAI; ARAI, NOBUAKI Proceedings of the 2nd Internationa Citation SEASTAR2 and Asian Bio-logging S SEASTAR2

More information

Husbandry and Reproduction of Varanus glauerti in Captivity

Husbandry and Reproduction of Varanus glauerti in Captivity Biawak, 4(3), pp. 103-107 2010 by International Varanid Interest Group Husbandry and Reproduction of Varanus glauerti in Captivity MARTIJN DE ZEEUW Hazerswoude-Dorp, The Netherlands E-mail: Martijn@odatria.nl

More information

206 Adopted: 4 April 1984

206 Adopted: 4 April 1984 OECD GUIDELINE FOR TESTING OF CHEMICALS 206 Adopted: 4 April 1984 1. I N T R O D U C T O R Y I N F O R M A T I O N P r e r e q u i s i t e s Water solubility Vapour pressure Avian dietary LC50 (See Test

More information

Western Painted Turtle Monitoring and Habitat Restoration at Buttertubs Marsh, Nanaimo, BC

Western Painted Turtle Monitoring and Habitat Restoration at Buttertubs Marsh, Nanaimo, BC Western Painted Turtle Monitoring and Habitat Restoration at Buttertubs Marsh, Nanaimo, BC Prepared for: The Nature Trust and the BC Ministry of Natural Resource and Forest Operations City of Nanaimo Buttertubs

More information

Journal of Zoology. Staying cool, keeping strong: incubation temperature affects performance in a freshwater turtle. Abstract.

Journal of Zoology. Staying cool, keeping strong: incubation temperature affects performance in a freshwater turtle. Abstract. Journal of Zoology Staying cool, keeping strong: incubation temperature affects performance in a freshwater turtle M. A. Micheli-Campbell, H. A. Campbell, R. L. Cramp, D. T. Booth & C. E. Franklin School

More information