Evolution of Vertebrates through the eyes of parasitic flatworms

Size: px
Start display at page:

Download "Evolution of Vertebrates through the eyes of parasitic flatworms"

Transcription

1 Evolution of Vertebrates through the eyes of parasitic flatworms Renee Hoekzema June 14, 2011 Essay as a part of the 2010 course on Vertebrate Evolution by Wilma Wessels Abstract In this essay we give a brief introduction to the subject of parasite-host cophylogeny and review a specific study in this field, namely the research done by Verneau et al. on the sequenced rdna of twenty-six species of parasitic flatworm of the family Polystomatidae that infest aquatic and amphibious tetrapod hosts [1]. The parasite phylogeny that is derived in this study gives us independent evidence for a few basic divergences in the phylogeny of the tetrapod hosts and the authors have used the molecular clock dating method to give time estimates for these divergence events. They fix their molecular clock at the Actinopterygii- Sarcopterygii split at 425 Ma, and then give the following estimates: 353 ± 26 Ma for the amniote-lissamphibian divergence, 191 ± 40 Ma for the diversification of chelonians, 246 ± 11 for the Archeobatrachia-Neobatrachia split that is usually associated with the break-up of Gondwanaland, and 92± 12 Ma for a specific divergence in the Neobatrachian parasites that they associate with the separation of South-America and Africa. They note that the time that seems to have elapsed between the origin of amniote parasites and the diversification of chelonians parasites might indicate the presence of an amniote in the water at an earlier time than we presently know of. We discuss the results of this study and the benefits and downsides of host-parasite cophylogenetic research in general. Introduction Cophylogeny is the study of comparing the evolutionary tree of different species or families and looking for the event of cospeciation: simultaneous divergence. In this essay we specifically discuss cophylogeny in the system of a parasite and its host. The evolution of the host can, certainly in the case of vertebrate hosts, be inferred from the palaeontological record. For the parasites we often have little or no fossil record, but we can use modern techniques such as the sequencing of a strand of ribosomal DNA to both determine the phylogeny of the parasite and give a time estimate of evolutionary divergences using the molecular clock. If cospeciation has occurred, then this molecular clock gives us a completely independent time estimate for the divergence in the evolution of the host, which can then be matched to the time estimate derived from the palaeontological data. Furthermore, the phylogeny of the parasite might in some cases be able to shed some light on the shady areas in the evolutionary tree of the host, giving us a clue on what missing links we might yet excavate, or telling us something about the ecology of extinct taxa. Determining whether cospeciation has occurred, however, is a highly non-trivial assignment. Parasites can both speciate and go extinct within the lineage of a single host. They can also infest a variety of hosts at the same time, if these have enough interaction or a medium is present that can sustain the parasite - like lice and flees that inhabit gregarious 1

2 mammals or parasitic invertebrates that experience a larval phase in water before infesting an amphibian or fish. Over geological periods of time, a parasite might expand its range of hosts and make what is called a horizontal transfer to a another host that is possibly not directly related to the previous one. These processes make it hard to determine the historical relationships between the parasite and host with any certainty. Luckily there are certain cases, such as the emergence of a geographical barrier, in which the divergence of host and parasite has the same cause and cospeciation can be determined conclusively. In this essay we will look at the 2001 study by Verneau et al. [1] in which the partial 18S rdna sequences of twenty-nine modern species of parasitic flatworm are considered. These worms have probably always infested tetrapods, as they have been found on a great number of amphibious tetrapods as well as on teleost fish and lungfish. Therefore they are very well suited for a cophylogenetic study of early vertebrate evolution. Parasitic flatworms The Monogenea is a class of fish parasites within the phylum Platyhelminthes (flatworms). Polystomatidae is the only family within the Monogenea to infest tetrapod hosts, which makes them ideally suited for a study of tetrapod evolution. Verneau et al. selected twenty-six polystomatids, three nonpolystomatid monogeneans and three tapeworms as a comparative outgroup, and partially sequenced their 18S ribosomal DNA. With a computer program they created a minimum evolution tree from this data set, the result of which is shown in figure 1. This diagram represents independent evidence for a few basic notions in our present understanding of the evolutionary tree of early tetrapods and amphibians, inferred from palaeontological evidence. We see a split between Actinopterygii and Sarcopterygii and the origin of tetrapods from fish. A little later we see a split between parasites that infest amniotes (chelonians) and amphibians. Then we see the split between Archaeobatrachia and Neobatrachia as a consequence of the breakup of Gondwanaland, which is very likely a cospeciation event. The authors admitted that the placement of the only salamander (Caudata) parasite Sphyranura oligorchis could not be conclusively determined from their data. Molecular clock Verneau et al. used the molecular clock method to give time estimates for the divergence events in figure 1. They assumed the rate of change of the ribosomal DNA to be constant in time, though possibly different for different lineages, allowing for faster and slower evolving lineages. They anchored the rate of change at two points, namely the Actinopterygii-Sarcopterygii split at 425 Ma and the present time. To estimate the time of a divergence, they considered all the lineages descending from that specific divergence except for the ones that were shown to evolve exceptionally fast or slow, and averaged over the different time estimates that followed from the linear interpolation for each lineage. This procedure gives the following results. The amniote-lissamphibian divergence is estimated at 353 ± 26 Ma, which is congruent with the current estimate for the evolution of aminotes - the oldest known amniote-like tetrapod is from the early Carboniferous [2]. The diversification of chelonians is placed around 191 ± 40 Ma. Note that this probably implies that the parasite has survived on some unknown aquatic amniote before the turtles appeared in the water and diversified. The early diversification of amphibians with the split between Archeobatrachia and Neobatrachia (connected to the split-up of Gondwanaland), was estimated at 246 ± 11, although a later analysis of completely sequenced 18S and partial 28S rdna pushed the estimate up to around 300 Ma [3, 4], which is also more consistent with recent molecular datings of the amphibians themselves [5, 6]. Finally, the divergence in parasites of Neobatrachia that divides the Polystoma group and the Eupolystoma/Sundapolystoma 2

3 that only infest African and Asian species, was estimated at 92±12 Ma and is probably related to the separation of South-America and Africa, which ended around 100 Ma. The Polystoma group is currently wide spread on frogs from all across the different continents, but this can be explained by the recent dispersal event of the hosts from America to Eurasia during the upper Cenozoic which is probably related to the glacial sea level minima, combined with host switching events. All these estimates are summarized in figure 2. Figure 1: Minimal evolution tree from [1]. The star represents the event to which molecular clock is gauged, the split of Actinopterygii and Sarcopterygii at ca. 425 Ma. Lengths represent the relative change in the sequence. On the right we see the hosts that the species infests. 3

4 Figure 2: A sketch of the parasite evolutionary tree, adapted from [1], with the time estimate and related host-divergence of several of the divergence events. The dotted line represents the unknown aquatic amniote hosts that carried the parasite before the chelonians arrived but after the origin of amniote parasites. Discussion The study by Verneau et al. shows us that by studying the DNA of parasitic organisms, we can find new information about the evolution, palaeobiogeography and ecology of their hosts, and new evidence for previous conclusions. The parasitic flatworm shows independent evidence for the broad outline of the evolutionary tree of amphibian vertebrates, such as the Actinopterygii-Sarcopterygii split 1, the amniote/non-amniote divergence and the Archaeobatrachia-Neobatrachia divergence. Furthermore, we now know that there was probably an aquatic amniote carrying the parasite in the period between the evolution of amniotes and the arrival of chelonians in the water. This is because we can see that the lineages split long before the chelonians evolved and radiated, so we are probably not dealing with the horizontal transfer directly from a lissamphibian host to the chelonians. We can be quite sure, however, that the parasite could not have infected a terrestrial animal, so there must have been an amniote in the water in the meantime. The estimate from the study for the split or transfer of the parasite to amniotic hosts is 353 ± 26 Ma, while currently the 1 The new sequences in [4] show more clearly that the tetrapods are indeed more closely related to the Sarcopterygii. 4

5 earliest known fully aquatic amniotes are from the Upper Carboniferous [7, 8, 9], so this might suggest the existence of other aquatic amniotes before these. It is also not excluded that the parasite could have infested an amniote with an amphibious lifestyle. It is in some cases quite hard to determine the lifestyle of early amniotes from the palaeontological data, and it has even been suggested that all amniotes were amphibious or aquatic until after the Carboniferous [7]. There have recently also been palaeontological studies by Laurin et al. that tried to determine the lifestyle of early amniotes more accurately using the microanatomical features of the radius or humerus [10, 11], but thus far not many extinct amniotes have been subjected to the study. As we can see, the results from Verneau et al. would support the theory that amniotes were present in the water from a very early time on. There are downsides to cophylogenetic research, and we can also see this in study by Verneau et al. One problem is the fact that the molecular clock is a very unreliable dating method. We can see from the different branchlengths in figure 1 that different lineages have a very different rate of ribosomal evolution, and since all these lineages have common ancestors, there is no reason to assume that the rate of change is constant along a lineage. Of course, the estimated time of a particular divergence does become more reliable if there are more lineages originating from the divergence and if the divergence is closer to one of the fixed points. Note that the uncertainty of the fixed point (in this case Actinopterygii-Sarcopterygii split at 425 Ma) also has to be taken into account when calculating the uncertainty in the molecular time estimates. The authors do not comment on this. We notice, however, that the authors may have underestimated their own error: in [3], Verneau, Du Preez and Badets adjust their estimate for the Archeobatrachia- Neobatrachia split to 300 Ma, a value that is about five times the estimated error bar higher than their first estimate of 246 ± 11. Another problem with this kind of research is that, because of the complicated philogenetic properties of the host-parasite system, the conclusions that we draw concerning the evolutionary history of the hosts from the evolutionary tree of the parasite are very unreliable. For any evolutionary tree we construct for the parasites, there are a great number of host-trees that fit the data. For example, in the case of the study we are considering, we have drawn the conclusion that the parasites have infested other amniotes before they infested the chelonians, because they seem to have diverged along with the amniote/lissamphibian divergence. Another explanation, however, is that this divergence of the parasites had no relationship with the evolution of amniotes, but took place within the lissamphibian host (a socalled duplication event) and that one lineage switched to aquatic amniotes at a certain time, and also went extinct within the lissamphibians. If this is the case, then our conclusion that there must have been another aquatic amniote before the taxa we know of entered the water, is false. The authors reject this possibility because their molecular dating is so close to the palaeontological dating of the origin of amniotes and it is therefore very improbable that the two are unrelated. We have seen, however, that the molecular dating is itself not very reliable. However, it does indeed seem improbable that this fundamental divergence of which the two branches extend to form the amphibian and amniote parasites respectively, would have no relationship with the actual amniote/lissamphibian divergence itself. Even though this study does not give us a very precise time estimate for different divergence events, it does certainly show how valuable cophylogenetic research can be. On the one hand it gives us independent evidence for the basic divergences in the evolution of amphibious tetrapods. On the other hand it gives us supportive, although not conclusive, evidence for the existence of amphibious or aquatic amniotes very early in the paleozoic. 5

6 References [1] Olivier Verneau, Sophie Bentz, Neeta Devi Sinnappah, Louis du Preez, Ian Whittington and Claude Combes, A view of early vertebrate evolution inferred from the phylogeny of polystome parasites (Monogenea: Plystomatidae), 2002: Proc. R. Soc. Lond. B 269, [2] R. L. Paton, T. R. Smithson and J. A. Clack, An amniote-like skeleton from the Early Carboniferous of Scotland, 1999: Nature 398, [3] Olivier Verneau, Louis du Preez and Mathieu Badets, Lessons from parasitic flatworms about evolution and historical biogeography of their vertebrate hosts, 2009: Comptes Rendus - Biologies 332, Is. 2-3, [4] Mathieu Badets, Olivier Verneau, Origin and evolution of alternative developmental strategies in amphibious sarcopterygian parasites (Platyhelminthes, Monogenea, Polystomatidae), 2009: Organisms Diversity and Evolution 9, Is. 3, [5] Diego San Mauro, Miguel Vences, Marina Alcobendas, Rafael Zardoya and Axel Meyer, Initial Diversifcation of Living Amphibians Predated the Breakup of Pangaea, 2005: The American Naturalist 165, Is. 5, [6] Kim Roelants, David J. Gower, Mark Wilkinson, Simon P. Loader, S. D. Biju, Karen Guillaume, Linde Moriau and Franky Bossuyt, Global patterns of diversification in the history of modern amphibians, 2007: Proc. Natl. Acad. Sci. USA 104, Is. 3, [7] Sean Patrick Modesto, The Postcranial Skeleton of the Aquatic Parareptile Mesosaurus tenuidens from the Gondwanan Permian, 2010: Journal of Vertebrate Paleontology 30, Is. 5, [8] S. P. Modesto, Noteosaurus africanus Broom is a Nomen Dubium, 1996: Journal of Vertebrate Paleontology 16, Is. 1, [9] Michael J. Benton, Vertebrate Paleontology, Third edition, 2005: Blackwell Publishing Ltd [10] Damien Germain and Michel Laurin, Microanatomy of the radius and lifestyle in amniotes (Vertebrata, Tetrapoda), 2005: Zoologica Scripta 34, Is. 4, [11] Aurore Canoville and Michel Laurin, Evolution of humeral microanatomy and lifestyle in amniotes, and some comments on palaeobiological inferences, 2010: Biological Journal of the Linnean Society 100,

Lecture 11 Wednesday, September 19, 2012

Lecture 11 Wednesday, September 19, 2012 Lecture 11 Wednesday, September 19, 2012 Phylogenetic tree (phylogeny) Darwin and classification: In the Origin, Darwin said that descent from a common ancestral species could explain why the Linnaean

More information

8/19/2013. Topic 4: The Origin of Tetrapods. Topic 4: The Origin of Tetrapods. The geological time scale. The geological time scale.

8/19/2013. Topic 4: The Origin of Tetrapods. Topic 4: The Origin of Tetrapods. The geological time scale. The geological time scale. Topic 4: The Origin of Tetrapods Next two lectures will deal with: Origin of Tetrapods, transition from water to land. Origin of Amniotes, transition to dry habitats. Topic 4: The Origin of Tetrapods What

More information

CLADISTICS Student Packet SUMMARY Phylogeny Phylogenetic trees/cladograms

CLADISTICS Student Packet SUMMARY Phylogeny Phylogenetic trees/cladograms CLADISTICS Student Packet SUMMARY PHYLOGENETIC TREES AND CLADOGRAMS ARE MODELS OF EVOLUTIONARY HISTORY THAT CAN BE TESTED Phylogeny is the history of descent of organisms from their common ancestor. Phylogenetic

More information

Red Eared Slider Secrets. Although Most Red-Eared Sliders Can Live Up to Years, Most WILL NOT Survive Two Years!

Red Eared Slider Secrets. Although Most Red-Eared Sliders Can Live Up to Years, Most WILL NOT Survive Two Years! Although Most Red-Eared Sliders Can Live Up to 45-60 Years, Most WILL NOT Survive Two Years! Chris Johnson 2014 2 Red Eared Slider Secrets Although Most Red-Eared Sliders Can Live Up to 45-60 Years, Most

More information

Modern Evolutionary Classification. Lesson Overview. Lesson Overview Modern Evolutionary Classification

Modern Evolutionary Classification. Lesson Overview. Lesson Overview Modern Evolutionary Classification Lesson Overview 18.2 Modern Evolutionary Classification THINK ABOUT IT Darwin s ideas about a tree of life suggested a new way to classify organisms not just based on similarities and differences, but

More information

May 10, SWBAT analyze and evaluate the scientific evidence provided by the fossil record.

May 10, SWBAT analyze and evaluate the scientific evidence provided by the fossil record. May 10, 2017 Aims: SWBAT analyze and evaluate the scientific evidence provided by the fossil record. Agenda 1. Do Now 2. Class Notes 3. Guided Practice 4. Independent Practice 5. Practicing our AIMS: E.3-Examining

More information

d a Name Vertebrate Evolution - Exam 2 1. (12) Fill in the blanks

d a Name Vertebrate Evolution - Exam 2 1. (12) Fill in the blanks Vertebrate Evolution - Exam 2 1. (12) Fill in the blanks 100 points Name f e c d a Identify the structures (for c and e, identify the entire structure, not the individual elements. b a. b. c. d. e. f.

More information

Bio 1B Lecture Outline (please print and bring along) Fall, 2006

Bio 1B Lecture Outline (please print and bring along) Fall, 2006 Bio 1B Lecture Outline (please print and bring along) Fall, 2006 B.D. Mishler, Dept. of Integrative Biology 2-6810, bmishler@berkeley.edu Evolution lecture #4 -- Phylogenetic Analysis (Cladistics) -- Oct.

More information

17.2 Classification Based on Evolutionary Relationships Organization of all that speciation!

17.2 Classification Based on Evolutionary Relationships Organization of all that speciation! Organization of all that speciation! Patterns of evolution.. Taxonomy gets an over haul! Using more than morphology! 3 domains, 6 kingdoms KEY CONCEPT Modern classification is based on evolutionary relationships.

More information

Evolution as Fact. The figure below shows transitional fossils in the whale lineage.

Evolution as Fact. The figure below shows transitional fossils in the whale lineage. Evolution as Fact Evolution is a fact. Organisms descend from others with modification. Phylogeny, the lineage of ancestors and descendants, is the scientific term to Darwin's phrase "descent with modification."

More information

Do the traits of organisms provide evidence for evolution?

Do the traits of organisms provide evidence for evolution? PhyloStrat Tutorial Do the traits of organisms provide evidence for evolution? Consider two hypotheses about where Earth s organisms came from. The first hypothesis is from John Ray, an influential British

More information

Title: Phylogenetic Methods and Vertebrate Phylogeny

Title: Phylogenetic Methods and Vertebrate Phylogeny Title: Phylogenetic Methods and Vertebrate Phylogeny Central Question: How can evolutionary relationships be determined objectively? Sub-questions: 1. What affect does the selection of the outgroup have

More information

Introduction to phylogenetic trees and tree-thinking Copyright 2005, D. A. Baum (Free use for non-commercial educational pruposes)

Introduction to phylogenetic trees and tree-thinking Copyright 2005, D. A. Baum (Free use for non-commercial educational pruposes) Introduction to phylogenetic trees and tree-thinking Copyright 2005, D. A. Baum (Free use for non-commercial educational pruposes) Phylogenetics is the study of the relationships of organisms to each other.

More information

You have 254 Neanderthal variants.

You have 254 Neanderthal variants. 1 of 5 1/3/2018 1:21 PM Joseph Roberts Neanderthal Ancestry Neanderthal Ancestry Neanderthals were ancient humans who interbred with modern humans before becoming extinct 40,000 years ago. This report

More information

Ch 1.2 Determining How Species Are Related.notebook February 06, 2018

Ch 1.2 Determining How Species Are Related.notebook February 06, 2018 Name 3 "Big Ideas" from our last notebook lecture: * * * 1 WDYR? Of the following organisms, which is the closest relative of the "Snowy Owl" (Bubo scandiacus)? a) barn owl (Tyto alba) b) saw whet owl

More information

Unit 19.3: Amphibians

Unit 19.3: Amphibians Unit 19.3: Amphibians Lesson Objectives Describe structure and function in amphibians. Outline the reproduction and development of amphibians. Identify the three living amphibian orders. Describe how amphibians

More information

LABORATORY EXERCISE 6: CLADISTICS I

LABORATORY EXERCISE 6: CLADISTICS I Biology 4415/5415 Evolution LABORATORY EXERCISE 6: CLADISTICS I Take a group of organisms. Let s use five: a lungfish, a frog, a crocodile, a flamingo, and a human. How to reconstruct their relationships?

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

Species: Panthera pardus Genus: Panthera Family: Felidae Order: Carnivora Class: Mammalia Phylum: Chordata

Species: Panthera pardus Genus: Panthera Family: Felidae Order: Carnivora Class: Mammalia Phylum: Chordata CHAPTER 6: PHYLOGENY AND THE TREE OF LIFE AP Biology 3 PHYLOGENY AND SYSTEMATICS Phylogeny - evolutionary history of a species or group of related species Systematics - analytical approach to understanding

More information

Introduction to Cladistic Analysis

Introduction to Cladistic Analysis 3.0 Copyright 2008 by Department of Integrative Biology, University of California-Berkeley Introduction to Cladistic Analysis tunicate lamprey Cladoselache trout lungfish frog four jaws swimbladder or

More information

LABORATORY EXERCISE 7: CLADISTICS I

LABORATORY EXERCISE 7: CLADISTICS I Biology 4415/5415 Evolution LABORATORY EXERCISE 7: CLADISTICS I Take a group of organisms. Let s use five: a lungfish, a frog, a crocodile, a flamingo, and a human. How to reconstruct their relationships?

More information

Name: Per. Date: 1. How many different species of living things exist today?

Name: Per. Date: 1. How many different species of living things exist today? Name: Per. Date: Life Has a History We will be using this website for the activity: http://www.ucmp.berkeley.edu/education/explorations/tours/intro/index.html Procedure: A. Open the above website and click

More information

Animal Diversity wrap-up Lecture 9 Winter 2014

Animal Diversity wrap-up Lecture 9 Winter 2014 Animal Diversity wrap-up Lecture 9 Winter 2014 1 Animal phylogeny based on morphology & development Fig. 32.10 2 Animal phylogeny based on molecular data Fig. 32.11 New Clades 3 Lophotrochozoa Lophophore:

More information

Caecilians (Gymnophiona)

Caecilians (Gymnophiona) Caecilians (Gymnophiona) David J. Gower* and Mark Wilkinson Department of Zoology, The Natural History Museum, London SW7 5BD, UK *To whom correspondence should be addressed (d.gower@nhm. ac.uk) Abstract

More information

Vertebrate Evolution

Vertebrate Evolution Vertebrate Evolution Torsten Bernhardt Redpath Museum, McGill University This teaching resource was made possible with funding from the PromoScience programme of NSERC. McGill University 2010 History of

More information

Amphibians (Lissamphibia)

Amphibians (Lissamphibia) Amphibians (Lissamphibia) David C. Cannatella a, *, David R. Vieites b, Peng Zhang b, and Marvalee H. Wake b, and David B. Wake b a Section of Integrative Biology and Texas Memorial Museum, 1 University

More information

Field Trip: Harvard Museum of Natural History (HMNH)

Field Trip: Harvard Museum of Natural History (HMNH) Field Trip: Harvard Museum of Natural History (HMNH) Objectives To observe the diversity of animals. To compare and contrast the various adaptations, body plans, etc. of the animals found at the HMNH.

More information

Test one stats. Mean Max 101

Test one stats. Mean Max 101 Test one stats Mean 71.5 Median 72 Max 101 Min 38 30 40 50 60 70 80 90 100 1 4 13 23 23 19 9 1 Sarcopterygii Step Out Text, Ch. 6 pp. 119-125; Text Ch. 9; pp. 196-210 Tetrapod Evolution The tetrapods arose

More information

Evolution on Exhibit Hints for Teachers

Evolution on Exhibit Hints for Teachers 1 Evolution on Exhibit Hints for Teachers This gallery activity explores a variety of evolution themes that are well illustrated by gallery specimens and exhibits. Each activity is aligned with the NGSS

More information

UNIT III A. Descent with Modification(Ch19) B. Phylogeny (Ch20) C. Evolution of Populations (Ch21) D. Origin of Species or Speciation (Ch22)

UNIT III A. Descent with Modification(Ch19) B. Phylogeny (Ch20) C. Evolution of Populations (Ch21) D. Origin of Species or Speciation (Ch22) UNIT III A. Descent with Modification(Ch9) B. Phylogeny (Ch2) C. Evolution of Populations (Ch2) D. Origin of Species or Speciation (Ch22) Classification in broad term simply means putting things in classes

More information

Resources. Visual Concepts. Chapter Presentation. Copyright by Holt, Rinehart and Winston. All rights reserved.

Resources. Visual Concepts. Chapter Presentation. Copyright by Holt, Rinehart and Winston. All rights reserved. Chapter Presentation Visual Concepts Transparencies Standardized Test Prep Introduction to Vertebrates Table of Contents Section 1 Vertebrates in the Sea and on Land Section 2 Terrestrial Vertebrates Section

More information

What is the evidence for evolution?

What is the evidence for evolution? What is the evidence for evolution? 1. Geographic Distribution 2. Fossil Evidence & Transitional Species 3. Comparative Anatomy 1. Homologous Structures 2. Analogous Structures 3. Vestigial Structures

More information

Ch 34: Vertebrate Objective Questions & Diagrams

Ch 34: Vertebrate Objective Questions & Diagrams Ch 34: Vertebrate Objective Questions & Diagrams Invertebrate Chordates and the Origin of Vertebrates 1. Distinguish between the two subgroups of deuterostomes. 2. Describe the four unique characteristics

More information

Differences between Reptiles and Mammals. Reptiles. Mammals. No milk. Milk. Small brain case Jaw contains more than one bone Simple teeth

Differences between Reptiles and Mammals. Reptiles. Mammals. No milk. Milk. Small brain case Jaw contains more than one bone Simple teeth Differences between Reptiles and Mammals Reptiles No milk Mammals Milk The Advantage of Being a Furball: Diversification of Mammals Small brain case Jaw contains more than one bone Simple teeth One ear

More information

These small issues are easily addressed by small changes in wording, and should in no way delay publication of this first- rate paper.

These small issues are easily addressed by small changes in wording, and should in no way delay publication of this first- rate paper. Reviewers' comments: Reviewer #1 (Remarks to the Author): This paper reports on a highly significant discovery and associated analysis that are likely to be of broad interest to the scientific community.

More information

If fungi, plants, and animals all have nuclei, this makes them which type of cell? What trait do the mushroom and gecko share that the tree lacks?

If fungi, plants, and animals all have nuclei, this makes them which type of cell? What trait do the mushroom and gecko share that the tree lacks? Objectives Before doing this lab you should understand what cladograms show and how they are constructed. After doing this lab you should be able to use cladograms to answer questions on how different

More information

REPTILES. Scientific Classification of Reptiles To creep. Kingdom: Animalia Phylum: Chordata Subphylum: Vertebrata Class: Reptilia

REPTILES. Scientific Classification of Reptiles To creep. Kingdom: Animalia Phylum: Chordata Subphylum: Vertebrata Class: Reptilia Scientific Classification of Reptiles To creep Kingdom: Animalia Phylum: Chordata Subphylum: Vertebrata Class: Reptilia REPTILES tetrapods - 4 legs adapted for land, hip/girdle Amniotes - animals whose

More information

Fish 2/26/13. Chordates 2. Sharks and Rays (about 470 species) Sharks etc Bony fish. Tetrapods. Osteichthans Lobe fins and lungfish

Fish 2/26/13. Chordates 2. Sharks and Rays (about 470 species) Sharks etc Bony fish. Tetrapods. Osteichthans Lobe fins and lungfish Chordates 2 Sharks etc Bony fish Osteichthans Lobe fins and lungfish Tetrapods ns Reptiles Birds Feb 27, 2013 Chordates ANCESTRAL DEUTEROSTOME Notochord Common ancestor of chordates Head Vertebral column

More information

Life in the Paleozoic

Life in the Paleozoic Life in the Paleozoic Ocean Planet & The Great Migration Paleozoic Late Middle Early 543-248 Myr P r e c a m b r i a n Eon P h a n e r o z o i c Proterozoic Archean Hadean Geologic Time Scale Era Period

More information

Evidence for Evolution by Natural Selection. Hunting for evolution clues Elementary, my dear, Darwin!

Evidence for Evolution by Natural Selection. Hunting for evolution clues Elementary, my dear, Darwin! Evidence for Evolution by Natural Selection Hunting for evolution clues Elementary, my dear, Darwin! 2006-2007 Evidence supporting evolution Fossil record shows change over time Anatomical record comparing

More information

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore Activitydevelop EXPLO RING VERTEBRATE CL ASSIFICATIO N What criteria

More information

B D. C D) Devonian E F. A) Cambrian. B) Ordovician. C) Silurian. E) Carboniferous. F) Permian. Paleozoic Era

B D. C D) Devonian E F. A) Cambrian. B) Ordovician. C) Silurian. E) Carboniferous. F) Permian. Paleozoic Era Paleozoic Era A) Cambrian A B) Ordovician B D C) Silurian C D) Devonian E) Carboniferous F) Permian E F The Cambrian explosion refers to the sudden appearance of many species of animals in the fossil record.

More information

from the phylogeny of polystome parasites

from the phylogeny of polystome parasites rclthe ROYAL &IZe soc r ErY.r/ \ l l / Received tz Sir-.-tU", zoot Accepud 23 October 2OOl Published online 25 February 2002 A view of early vertebrate evolution inferred from the phylogeny of polystome

More information

Biology 1B Evolution Lecture 11 (March 19, 2010), Insights from the Fossil Record and Evo-Devo

Biology 1B Evolution Lecture 11 (March 19, 2010), Insights from the Fossil Record and Evo-Devo Biology 1B Evolution Lecture 11 (March 19, 2010), Insights from the Fossil Record and Evo-Devo Extinction Important points on extinction rates: Background rate of extinctions per million species per year:

More information

TOPIC CLADISTICS

TOPIC CLADISTICS TOPIC 5.4 - CLADISTICS 5.4 A Clades & Cladograms https://upload.wikimedia.org/wikipedia/commons/thumb/4/46/clade-grade_ii.svg IB BIO 5.4 3 U1: A clade is a group of organisms that have evolved from a common

More information

INQUIRY & INVESTIGATION

INQUIRY & INVESTIGATION INQUIRY & INVESTIGTION Phylogenies & Tree-Thinking D VID. UM SUSN OFFNER character a trait or feature that varies among a set of taxa (e.g., hair color) character-state a variant of a character that occurs

More information

Biodiversity and Distributions. Lecture 2: Biodiversity. The process of natural selection

Biodiversity and Distributions. Lecture 2: Biodiversity. The process of natural selection Lecture 2: Biodiversity What is biological diversity? Natural selection Adaptive radiations and convergent evolution Biogeography Biodiversity and Distributions Types of biological diversity: Genetic diversity

More information

Geo 302D: Age of Dinosaurs LAB 4: Systematics Part 1

Geo 302D: Age of Dinosaurs LAB 4: Systematics Part 1 Geo 302D: Age of Dinosaurs LAB 4: Systematics Part 1 Systematics is the comparative study of biological diversity with the intent of determining the relationships between organisms. Humankind has always

More information

8/19/2013. Topic 5: The Origin of Amniotes. What are some stem Amniotes? What are some stem Amniotes? The Amniotic Egg. What is an Amniote?

8/19/2013. Topic 5: The Origin of Amniotes. What are some stem Amniotes? What are some stem Amniotes? The Amniotic Egg. What is an Amniote? Topic 5: The Origin of Amniotes Where do amniotes fall out on the vertebrate phylogeny? What are some stem Amniotes? What is an Amniote? What changes were involved with the transition to dry habitats?

More information

Vertebrate Structure and Function

Vertebrate Structure and Function Vertebrate Structure and Function Part 1 - Comparing Structure and Function Classification of Vertebrates a. Phylum: Chordata Common Characteristics: Notochord, pharyngeal gill slits, hollow dorsal nerve

More information

Most amphibians begin life as aquatic organisms and then live on land as adults.

Most amphibians begin life as aquatic organisms and then live on land as adults. Section 3: Most amphibians begin life as aquatic organisms and then live on land as adults. K What I Know W What I Want to Find Out L What I Learned Essential Questions What were the kinds of adaptations

More information

Evolution of Tetrapods

Evolution of Tetrapods Evolution of Tetrapods Amphibian-like creatures: The earliest tracks of a four-legged animal were found in Poland in 2010; they are Middle Devonian in age. Amphibians arose from sarcopterygians sometime

More information

Animal Diversity III: Mollusca and Deuterostomes

Animal Diversity III: Mollusca and Deuterostomes Animal Diversity III: Mollusca and Deuterostomes Objectives: Be able to identify specimens from the main groups of Mollusca and Echinodermata. Be able to distinguish between the bilateral symmetry on a

More information

Interpreting Evolutionary Trees Honors Integrated Science 4 Name Per.

Interpreting Evolutionary Trees Honors Integrated Science 4 Name Per. Interpreting Evolutionary Trees Honors Integrated Science 4 Name Per. Introduction Imagine a single diagram representing the evolutionary relationships between everything that has ever lived. If life evolved

More information

Animal Evolution The Chordates. Chapter 26 Part 2

Animal Evolution The Chordates. Chapter 26 Part 2 Animal Evolution The Chordates Chapter 26 Part 2 26.10 Birds The Feathered Ones Birds are the only animals with feathers Descendants of flying dinosaurs in which scales became modified as feathers Long

More information

6. The lifetime Darwinian fitness of one organism is greater than that of another organism if: A. it lives longer than the other B. it is able to outc

6. The lifetime Darwinian fitness of one organism is greater than that of another organism if: A. it lives longer than the other B. it is able to outc 1. The money in the kingdom of Florin consists of bills with the value written on the front, and pictures of members of the royal family on the back. To test the hypothesis that all of the Florinese $5

More information

Phylogeny Reconstruction

Phylogeny Reconstruction Phylogeny Reconstruction Trees, Methods and Characters Reading: Gregory, 2008. Understanding Evolutionary Trees (Polly, 2006) Lab tomorrow Meet in Geology GY522 Bring computers if you have them (they will

More information

Question Set 1: Animal EVOLUTIONARY BIODIVERSITY

Question Set 1: Animal EVOLUTIONARY BIODIVERSITY Biology 162 LAB EXAM 2, AM Version Thursday 24 April 2003 page 1 Question Set 1: Animal EVOLUTIONARY BIODIVERSITY (a). We have mentioned several times in class that the concepts of Developed and Evolved

More information

Warm-Up: Fill in the Blank

Warm-Up: Fill in the Blank Warm-Up: Fill in the Blank 1. For natural selection to happen, there must be variation in the population. 2. The preserved remains of organisms, called provides evidence for evolution. 3. By using and

More information

Comparative Zoology Portfolio Project Assignment

Comparative Zoology Portfolio Project Assignment Comparative Zoology Portfolio Project Assignment Using your knowledge from the in class activities, your notes, you Integrated Science text, or the internet, you will look at the major trends in the evolution

More information

Evolution of Biodiversity

Evolution of Biodiversity Long term patterns Evolution of Biodiversity Chapter 7 Changes in biodiversity caused by originations and extinctions of taxa over geologic time Analyses of diversity in the fossil record requires procedures

More information

From Slime to Scales: Evolution of Reptiles. Review: Disadvantages of Being an Amphibian

From Slime to Scales: Evolution of Reptiles. Review: Disadvantages of Being an Amphibian From Slime to Scales: Evolution of Reptiles Review: Disadvantages of Being an Amphibian Gelatinous eggs of amphibians cannot survive out of water, so amphibians are limited in terms of the environments

More information

Animal Form and Function. Amphibians. United by several distinguishing apomorphies within the Vertebrata

Animal Form and Function. Amphibians. United by several distinguishing apomorphies within the Vertebrata Animal Form and Function Kight Amphibians Class Amphibia (amphibia = living a double life) United by several distinguishing apomorphies within the Vertebrata 1. Skin Thought Question: For whom are integumentary

More information

Fig Phylogeny & Systematics

Fig Phylogeny & Systematics Fig. 26- Phylogeny & Systematics Tree of Life phylogenetic relationship for 3 clades (http://evolution.berkeley.edu Fig. 26-2 Phylogenetic tree Figure 26.3 Taxonomy Taxon Carolus Linnaeus Species: Panthera

More information

Classification systems help us to understand where humans fit into the history of life on earth Organizing the great diversity of life into

Classification systems help us to understand where humans fit into the history of life on earth Organizing the great diversity of life into You are here Classification systems help us to understand where humans fit into the history of life on earth Organizing the great diversity of life into categories (groups based on shared characteristics)

More information

Comparing DNA Sequences Cladogram Practice

Comparing DNA Sequences Cladogram Practice Name Period Assignment # See lecture questions 75, 122-123, 127, 137 Comparing DNA Sequences Cladogram Practice BACKGROUND Between 1990 2003, scientists working on an international research project known

More information

AP Biology. AP Biology

AP Biology. AP Biology Evolution by Natural Selection 2006-2007 DOCTRINE TINTORETTO The Creation of the Animals 1550 But the Fossil record OBSERVATION mya Quaternary 1.5 Tertiary 63 Cretaceous 135 Jurassic 180 Triassic 225 Permian

More information

Evolution by Natural Selection

Evolution by Natural Selection Evolution by Natural Selection 225 Permian Seed Plants Flowering Plants Birds Land Plants Mammals Insects Reptiles Teleost Fish Amphibians Chordates Molluscs Arthropods Dinosaurs 180 Triassic Jawless Fish

More information

CHAPTER 26. Animal Evolution The Vertebrates

CHAPTER 26. Animal Evolution The Vertebrates CHAPTER 26 Animal Evolution The Vertebrates Impacts, Issues: Interpreting and Misinterpreting the Past No one was around to witness the transitions in the history of life Fossils allow us glimpses into

More information

1 EEB 2245/2245W Spring 2014: exercises working with phylogenetic trees and characters

1 EEB 2245/2245W Spring 2014: exercises working with phylogenetic trees and characters 1 EEB 2245/2245W Spring 2014: exercises working with phylogenetic trees and characters 1. Answer questions a through i below using the tree provided below. a. The sister group of J. K b. The sister group

More information

A R T I C L E S STRATIGRAPHIC DISTRIBUTION OF VERTEBRATE FOSSIL FOOTPRINTS COMPARED WITH BODY FOSSILS

A R T I C L E S STRATIGRAPHIC DISTRIBUTION OF VERTEBRATE FOSSIL FOOTPRINTS COMPARED WITH BODY FOSSILS A R T I C L E S STRATIGRAPHIC DISTRIBUTION OF VERTEBRATE FOSSIL FOOTPRINTS COMPARED WITH BODY FOSSILS Leonard Brand & James Florence Department of Biology Loma Linda University WHAT THIS ARTICLE IS ABOUT

More information

Sec KEY CONCEPT Amphibians evolved from lobe-finned fish.

Sec KEY CONCEPT Amphibians evolved from lobe-finned fish. Wed 4/26 Activities Learning Target Class Activities *attached below (scroll down)* Website: my.hrw.com Username: bio678 Password:a4s5s Students will describe the adaptations of amphibians that help them

More information

Evolution by Natural Selection

Evolution by Natural Selection Evolution by Natural Selection 2006-2007 DOCTRINE TINTORETTO The Creation of the Animals 1550 But the Fossil record OBSERVATION Anaerobic Bacteria Photosynthetic Bacteria Dinosaurs Green Algae Multicellular

More information

Reptilian Requirements Created by the North Carolina Aquarium at Fort Fisher Education Section

Reptilian Requirements Created by the North Carolina Aquarium at Fort Fisher Education Section Essential Question: North Carolina Aquariums Education Section Reptilian Requirements Created by the North Carolina Aquarium at Fort Fisher Education Section What physical and behavioral adaptations do

More information

Quiz Flip side of tree creation: EXTINCTION. Knock-on effects (Crooks & Soule, '99)

Quiz Flip side of tree creation: EXTINCTION. Knock-on effects (Crooks & Soule, '99) Flip side of tree creation: EXTINCTION Quiz 2 1141 1. The Jukes-Cantor model is below. What does the term µt represent? 2. How many ways can you root an unrooted tree with 5 edges? Include a drawing. 3.

More information

Points of View Tetrapod Phylogeny, Amphibian Origins, and the De nition of the Name Tetrapoda

Points of View Tetrapod Phylogeny, Amphibian Origins, and the De nition of the Name Tetrapoda Points of View Syst. Biol. 51(2):364 369, 2002 Tetrapod Phylogeny, Amphibian Origins, and the De nition of the Name Tetrapoda MICHEL LAURIN Équipe Formations squelettiques UMR CNRS 8570, Case 7077, Université

More information

Evolution. Evolution is change in organisms over time. Evolution does not have a goal; it is often shaped by natural selection (see below).

Evolution. Evolution is change in organisms over time. Evolution does not have a goal; it is often shaped by natural selection (see below). Evolution Evolution is change in organisms over time. Evolution does not have a goal; it is often shaped by natural selection (see below). Species an interbreeding population of organisms that can produce

More information

Non-fiction: The Descendants

Non-fiction: The Descendants Non-fiction:The Descendants The Descendants By Bobby Oerzen Is a newfound prehistoric species our direct ancestor? Matthew Berger wasn t looking to revise the story of human origins. He was just chasing

More information

Name: Date: Hour: Fill out the following character matrix. Mark an X if an organism has the trait.

Name: Date: Hour: Fill out the following character matrix. Mark an X if an organism has the trait. Name: Date: Hour: CLADOGRAM ANALYSIS What is a cladogram? It is a diagram that depicts evolutionary relationships among groups. It is based on PHYLOGENY, which is the study of evolutionary relationships.

More information

Let s Build a Cladogram!

Let s Build a Cladogram! Name Let s Build a Cladogram! Date Introduction: Cladistics is one of the newest trends in the modern classification of organisms. This method shows the relationship between different organisms based on

More information

The extant amphibians and reptiles are a diverse collection

The extant amphibians and reptiles are a diverse collection 2 Phylogenetic Systematics and the Origins of Amphibians and Reptiles The extant amphibians and reptiles are a diverse collection of animals with evolutionary histories dating back to the Early Carboniferous

More information

Chapter 22 Darwin and Evolution by Natural Selection

Chapter 22 Darwin and Evolution by Natural Selection Anaerobic Bacteria Photosynthetic Bacteria Dinosaurs Green Algae Multicellular Animals Flowering Molluscs Arthropods Chordates Jawless Fish Teleost Fish Amphibians Insects Reptiles Mammals Birds Land Plants

More information

Systematics, Taxonomy and Conservation. Part I: Build a phylogenetic tree Part II: Apply a phylogenetic tree to a conservation problem

Systematics, Taxonomy and Conservation. Part I: Build a phylogenetic tree Part II: Apply a phylogenetic tree to a conservation problem Systematics, Taxonomy and Conservation Part I: Build a phylogenetic tree Part II: Apply a phylogenetic tree to a conservation problem What is expected of you? Part I: develop and print the cladogram there

More information

Types of Evolution: Punctuated Equilibrium vs Gradualism

Types of Evolution: Punctuated Equilibrium vs Gradualism Biology Types of Evolution: Punctuated Equilibrium vs Gradualism Use the information below AND YOUR NOTES to answer the questions that follow. READ the information before attempting to do the work. You

More information

Suggest two features you can see in the pictures that could be used to classify these organisms (2)

Suggest two features you can see in the pictures that could be used to classify these organisms (2) Q. (a) Organisms can be classified using features that can be seen. Organisms A, B, C, D and E below all belong to a large group called the arthropods. (i) Suggest two features you can see in the pictures

More information

Living Dinosaurs (3-5) Animal Demonstrations

Living Dinosaurs (3-5) Animal Demonstrations Living Dinosaurs (3-5) Animal Demonstrations At a glance Students visiting the zoo will be introduced to live animals and understand their connection to a common ancestor, dinosaurs. Time requirement One

More information

Modern taxonomy. Building family trees 10/10/2011. Knowing a lot about lots of creatures. Tom Hartman. Systematics includes: 1.

Modern taxonomy. Building family trees 10/10/2011. Knowing a lot about lots of creatures. Tom Hartman. Systematics includes: 1. Modern taxonomy Building family trees Tom Hartman www.tuatara9.co.uk Classification has moved away from the simple grouping of organisms according to their similarities (phenetics) and has become the study

More information

1. Examine the specimens of sponges on the lab table. Which of these are true sponges? Explain your answers.

1. Examine the specimens of sponges on the lab table. Which of these are true sponges? Explain your answers. Station #1 - Porifera 1. Examine the specimens of sponges on the lab table. Which of these are true sponges? Explain your answers. 2. Sponges are said to have an internal special skeleton. Examine the

More information

Honolulu&Zoo& Evidence&for&Evolution&

Honolulu&Zoo& Evidence&for&Evolution& Biology'(Valentine'M/202)' Summer'2013' ' Directions:+ Name' ' Honolulu&Zoo& Evidence&for&Evolution& Do&your&best&to&complete&as&many&questions&as&possible&in&the&one&hour&you&have&at&the& Honolulu&Zoo.&You&may&work&with&your&partners,&but&be&sure&to&write&the&answers&in&

More information

LABORATORY #10 -- BIOL 111 Taxonomy, Phylogeny & Diversity

LABORATORY #10 -- BIOL 111 Taxonomy, Phylogeny & Diversity LABORATORY #10 -- BIOL 111 Taxonomy, Phylogeny & Diversity Scientific Names ( Taxonomy ) Most organisms have familiar names, such as the red maple or the brown-headed cowbird. However, these familiar names

More information

This is a series of skulls and front leg fossils of organisms believed to be ancestors of the modern-day horse.

This is a series of skulls and front leg fossils of organisms believed to be ancestors of the modern-day horse. Evidence of Evolution Background When Charles Darwin first proposed the idea that all new species descend from an ancestor, he performed an exhaustive amount of research to provide as much evidence as

More information

Natural Sciences 360 Legacy of Life Lecture 3 Dr. Stuart S. Sumida. Phylogeny (and Its Rules) Biogeography

Natural Sciences 360 Legacy of Life Lecture 3 Dr. Stuart S. Sumida. Phylogeny (and Its Rules) Biogeography Natural Sciences 360 Legacy of Life Lecture 3 Dr. Stuart S. Sumida Phylogeny (and Its Rules) Biogeography So, what is all the fuss about phylogeny? PHYLOGENETIC SYSTEMATICS allows us both define groups

More information

Anatomy. Name Section. The Vertebrate Skeleton

Anatomy. Name Section. The Vertebrate Skeleton Name Section Anatomy The Vertebrate Skeleton Vertebrate paleontologists get most of their knowledge about past organisms from skeletal remains. Skeletons are useful for gleaning information about an organism

More information

What are taxonomy, classification, and systematics?

What are taxonomy, classification, and systematics? Topic 2: Comparative Method o Taxonomy, classification, systematics o Importance of phylogenies o A closer look at systematics o Some key concepts o Parts of a cladogram o Groups and characters o Homology

More information

NAME: DATE: SECTION:

NAME: DATE: SECTION: NAME: DATE: SECTION: MCAS PREP PACKET EVOLUTION AND BIODIVERSITY 1. Which of the following observations best supports the conclusion that dolphins and sharks do not have a recent common ancestor? A. Dolphins

More information

Evolution of Birds. Summary:

Evolution of Birds. Summary: Oregon State Standards OR Science 7.1, 7.2, 7.3, 7.3S.1, 7.3S.2 8.1, 8.2, 8.2L.1, 8.3, 8.3S.1, 8.3S.2 H.1, H.2, H.2L.4, H.2L.5, H.3, H.3S.1, H.3S.2, H.3S.3 Summary: Students create phylogenetic trees to

More information

Phylogeny of Animalia (overview)

Phylogeny of Animalia (overview) The Diversity of Animals 2 Chapter 23 Phylogeny of Animalia (overview) Key features of Chordates Phylum Chordata (the Chordates) includes both invertebrates and vertebrates that share (at some point in

More information

Subphylum Vertebrata

Subphylum Vertebrata Subphylum Vertebrata Superclass Agnatha (jawless vertebrates) Class Myxini Class Cephalaspidomorphi Superclass Gnathostomata (jawed vertebrates) Class Chondrichthyes Class Osteichthyes Class Amphibia Class

More information

Cladistics (reading and making of cladograms)

Cladistics (reading and making of cladograms) Cladistics (reading and making of cladograms) Definitions Systematics The branch of biological sciences concerned with classifying organisms Taxon (pl: taxa) Any unit of biological diversity (eg. Animalia,

More information

DEUTEROSTOMES. This presentation contains copyrighted material under the educational fair use exemption to the U.S. copyright law.

DEUTEROSTOMES. This presentation contains copyrighted material under the educational fair use exemption to the U.S. copyright law. DEUTEROSTOMES This presentation contains copyrighted material under the educational fair use exemption to the U.S. copyright law. Deuterostome Echinodermata body plan! Body plan! Larvae are bilateral!

More information