Evolutionary Relationships Among the Atelocerata (Labiata)

Size: px
Start display at page:

Download "Evolutionary Relationships Among the Atelocerata (Labiata)"

Transcription

1 Evolutionary Relationships Among the Atelocerata (Labiata) In the previous lecture we concluded that the Phylum Arthropoda is a monophyletic group. This group is supported by a number of synapomorphies that unite the 5 recognized subgroups (trilobites, chelicerates, crustaceans, myriapods and hexapods). We also concluded that the sister group to the Arthropoda is either the Oynchophora or the Tardigrada. However we also discovered that the evolutionary relationships among the 5 subgroups in the Arthropoda are still unresolved. Myriapoda, Crustacea and Hexapoda do seemed united as the Mandibulata, but the placement of the Hexapoda is questionable. Some studies unite the Hexapoda with the Myriapoda, forming the Atelocerata (Labiata in the textbook), while other studies unite the Hexapoda with the Crustacea, forming the Pancrustacea. Still other studies place the Hexapoda within the Crustacea, making the Crustacea, paraphyletic as currently defined. Until more convincing evidence to the contrary we will assume that the Myriapoda and the Hexapoda form a natural (monophyletic) group as does your textbook.

2 Characters that Unite the Myriapoda and Hexapoda One pair of antennae versus two pair in crustaceans. Metamerically arranged tracheae versus gills in crustaceans. Development of excretory Malpighian tubules from the hind gut versus nephridia in crustaceans. Production of spermatophores versus release of free sperm in crustaceans. Possession of anterior tentorial arms in head capsule versus no tentorium in crustaceans.

3 Classification and Characteristics of the Myriapoda Diplopoda (millipedes) 21 body segments; body segments fused in pairs each with two pairs of legs (hence the name); lack of second maxillae (dignathous); reproductive organs open at anterior body segment (progoneate); short antennae not branched; 8000 species. Pauropoda (pauropods) 11 or 12 body segments; one pair of legs on each metamere; dignathous; progoneate; short antennae branched; 700 species. Chilopoda (centipedes) body segments; at most one pair of legs on each metamere; probably dignathous (possible trignathous); gential opening on last body segment (opistogoneate); long filamentous antennae; 3000 species. Symphyla (symphylans) 14 body segments; at most one pair of legs on each metamere; trignathous; progoneate; antennae long and musculated; 200 species. Phylogenetic relationships among these four classes are not well resolved.

4 Characters that Unite the Myriapoda and separate them from the Hexapoda Loss of compound eyes. Loss of palps on the first and second maxillae. Presence of organs of Tömösvary at the base each antenna. May be used to detect auditory stimuli. Presence of special repugnatorial glands.

5 Characters that unite the Hexapoda and separate them from the Myriapoda Fusion of the second maxillae as the labium (also seen in the symphylans). Formation of a distinct thorax composed of three body segments, and a distinct abdomen. Fixation of the maximal number of abdominal segments at 11, plus the telson. Fewer abdominal segments possible through reduction. Loss of all abdominal appendages.

6 Evolutionary Relationships within the Hexapoda An old theory suggested that the hexapods evolved from the symphylanlike ancestor. If true, this would make the myriapods paraphyletic. This theory is now discredited and certainly would not be true if the myriapods are not the sister group of the hexapods. The Hexapoda is composed of two classes, the Entognatha and the Insecta. Your textbook divides the Entognatha into two classes: the Entognatha (Diplura) and the Parainsecta (Protura and Collembola). Recent evidence indicates that the Entognatha is a monophyletic group that is the sister group of the insects. Some studies suggest that the Diplura is the sister group to the insects because they shared filiform cerci, and characteristics of the sperm. This would make the Entognatha paraphyletic as defined here. Two possible relationships of the Entognatha and Insecta Myriapoda Insecta Diplura Protura Collembola Myriapoda Insecta Diplura Protura Collembola

7 Classification and Characteristics of the Entognatha Protura 12 segments in the abdomen; minute elongate bodies; functionally tetrapodal, forelegs serve as sensory appendages; antennae absent; 500 species. Collembola no more than 6 segments in the abdomen; minute stout bodies; antennae with few segments; highly modified structures for jumping; 6000 species. Diplura 10 segments in the abdomen; small to large enlongate bodies; antennae long, unbranched; superfically similar to symphylans; 800 species.

8 Characters that unite the Entognatha and separate them from the Insecta Endognathy (enclosed mouth). Preoral cavity enclosed laterally by pleural folds which grow down from the head and fuse with the labium. Eyes reduced or absent. Reduced Malpighian tubules. Enlongate, sac-like ovarioles.

9 Major Groups within Class Insecta Class Insecta is divided into two major subgroups, the Apterygotes (=primitively wingless insects) and the Pterygota (=winged insects). The Pterygota appears to be monophyletic, but the Apterygota is not. The Apterygota consists of two orders, the Archaeognatha and the Thysanura. The Pterygota is divided into the Paleoptera (=old wing) and the Neoptera (=new wing). The Paleoptera cannot flex their wings over the abdomen, while the Neoptera can. The Neoptera appears to be a monophyletic group. The Paleoptera is probably not. The Paleoptera consists of two extent orders, the Ephemeroptera and the Odonata. The Neoptera consist of 26 orders, which are divided into one formal group, the Holometabola (11 orders) and two informal groups the Polyneoptera (11 orders) and the Paraneotpera (4 orders).

10 Archaeognatha (Bristletails) Classification. 2 extant families, one extinct family. 500 species worldwide. Structure. Large compound eyes with continuous medial border. Mandibles are monocondylic (single point of articulation with the head). Apical incisors widely separated from the molar process, which operates with a rolling motion as in crustaceans. Tentorium with very simple structure. Appendages have a ventral articulation with body instead of lateral one as seen in more derived insects. Coxae have small exites (styli), reminiscent of the biramous condition in crustaceans. Abdominal styli present. Specialized jumping structures and musculature. Body covered in scales. Natural history. Active at night, hiding by day under back or in rock crevices. Feed on algae, lichen and vegetable debris. Primitive mandibles used a augers. Moderately good runners and jumpers. Jump by flexing abdomen. Sperm transfer indirect via a spermatophore. Ametabolous (without metamorphosis) development, with immatures closely resembling adults. Molting continues throughout life.

11 Thysanura (Silverfish) Classification. 5 living families. 370 species worldwide. Structure. Mandibles are dicondylic (two points of articulation with the head capsule). Apical incisors and molar region are not widely separated. Biting is transverse as in more derived insects. Coxae do not have styli. Abdominal styli variably present. Body covered in scales. Natural history. Free-living cryptozoics living under bark and rocks, and in leaflitter. Very common in ant nests. Most species are omnivorous. Some species are subterranean or cavernicolous herbivores. Some species produce cellulase to aid in digestion of cellulose. Sperm transfer is indirect via a spermatophore. Ametabolous development with immatures closely resembling adults. Molting continues throughout life. Lifespan of some species over 4 years.

12 Conclusions Despite sharing some complex characters, the validity of the group Atelecerata (Myriapoda + Hexapoda) is questionable and several recent studies place the Hexapoda in the Crustacea or as its sister group. The Hexapoda is divided into the Entognatha and the Insecta. The Insecta is clearly monophyletic, but the Entognatha may not be, depending on the placement of the Diplura. The Insecta are divided into the Apterygota (not monophyletic) and the Pterygota (monophyletic), which in turn is divided in the Paleoptera (not monophyletic) and the Neoptera (monophyletic). The Apterygota consist of two orders of small wingless insects, the Archaeognatha (Bristletails) and the Thysanura (Silverfish). These groups show several characters that illustrate the evolutionary transition from the Entognathans to the insects. The Thysanura is the sister goup to the Pterygota.

Diplurans. Classification Life History & Ecology Distribution. Major Families Fact File Hot Links

Diplurans. Classification Life History & Ecology Distribution. Major Families Fact File Hot Links DIPLURA Diplurans The name Diplura, derived from the Greek words "diplo-" meaning two and "ura" meaning tails, refers to the large cerci at the rear of the abdomen. Classification Life History & Ecology

More information

Phylum Arthropoda. Chapter 13 Part 2 of 3

Phylum Arthropoda. Chapter 13 Part 2 of 3 Phylum Arthropoda Chapter 13 Part 2 of 3 Phylum Arthropoda: Jointed feet General Characteristics: Exoskeleton made of chitin present and must be molted when out grown, segmented body, Jointed appendages

More information

Figure 1. Numerical Distribution of Named Animal Taxa.

Figure 1. Numerical Distribution of Named Animal Taxa. Arthropod Review Sheet The Phylum Arthropoda is the largest and most diverse of all animal phyla (Fig 1). More than three quarters of the animals on earth are arthropods, and most of these are insects.

More information

Main arthropod clades (Regier et al 2010)

Main arthropod clades (Regier et al 2010) Main arthropod clades (Regier et al 2010) Trilobita Chelicerata Mandibulata (Chilopoda, Diplopoda) Pancrustacea Oligostraca (Ostracoda, Branchiura) Alticrustacea Vericrustacea (Branchiopoda, Decapoda)

More information

Animal Diversity 3. jointed appendages ventral nervous system hemocoel. - marine

Animal Diversity 3. jointed appendages ventral nervous system hemocoel. - marine Animal Diversity 3 Lab Goals To learn the bauplan (body plan) and identifying characteristics of the phyla Arthrodopa, Echinodermata, and Chordata along with the main subphyla and classes. Include, in

More information

Classification Life History & Ecology Distribution. Major Families Fact File Hot Links

Classification Life History & Ecology Distribution. Major Families Fact File Hot Links EMBIOPTERA Webspinners / Embiids The name Embioptera, derived from the Greek "embio" meaning lively and "ptera" meaning wings refers to the fluttery movement of wings that was observed in the first male

More information

Grasshopper Dissection

Grasshopper Dissection Grasshopper Dissection External Observation Locate the head, thorax, and abdomen. Observe the head. Locate the two compound eyes and the three simple eyes. 1. Why do you think grasshoppers have two types

More information

4. List 3 characteristics of all arthropods. a. b. c. 5. Name 3 main arthropod groups.

4. List 3 characteristics of all arthropods. a. b. c. 5. Name 3 main arthropod groups. Arthropod Coloring Worksheet Arthropods (jointed appendages) are a group of invertebrate animals in the Kingdom Animalia. All arthropods have a hard exoskeleton made of chitin, a body divided into segments,

More information

Question. Introduction. Insect Orders. Objectives. Classification Review Diagram. How do you... tell the difference between a beetle and a bee?

Question. Introduction. Insect Orders. Objectives. Classification Review Diagram. How do you... tell the difference between a beetle and a bee? Insect Orders Objectives After you have completed this unit you should know for each order: its common name, order name, and meaning of the order name its development or metamorphosis 3-4 facts regarding

More information

Nature Club. Insect Guide. Make new friends while getting to know your human, plant and animal neighbours!

Nature Club. Insect Guide. Make new friends while getting to know your human, plant and animal neighbours! Nature Club Insect Guide Make new friends while getting to know your human, plant and animal neighbours! We share our world with so many cool critters! Can you identify them? Use this guide as you search

More information

4-H Entomology Study Materials March 2010 version 1.1. Guide to Insect and Non-Insect Arthropods. I. Insect Orders

4-H Entomology Study Materials March 2010 version 1.1. Guide to Insect and Non-Insect Arthropods. I. Insect Orders 4-H Entomology Study Materials March 2010 version 1.1 Guide to Insect and Non-Insect Arthropods I. Insect Orders Phylum Arthropoda, Subphylum Hexapoda, Class Insecta Insect Characteristics Most adult insects

More information

Morphologic study of dog flea species by scanning electron microscopy

Morphologic study of dog flea species by scanning electron microscopy Scientia Parasitologica, 2006, 3-4, 77-81 Morphologic study of dog flea species by scanning electron microscopy NAGY Ágnes 1, L. BARBU TUDORAN 2, V. COZMA 1 1 University of Agricultural Sciences and Veterinary

More information

Entognathous hexapods: Collembola, Protura, Diplura

Entognathous hexapods: Collembola, Protura, Diplura Exoskeleton vs. Endoskeleton: biomechanical trade-offs Other advantages of the exoskeleton.. The necessity of molting allows Complete Metamorphosis Hercules beetle (Dynastes hercules) strength of skeleton

More information

PROOF. Phylogeny of Insects Peter S. Cranston and Penny J. Gullan University of California, Davis

PROOF. Phylogeny of Insects Peter S. Cranston and Penny J. Gullan University of California, Davis Encyclopedia-P.qxd 28/09/02 11:34 AM Page 882 882 Phylogeny of Insects Peterson, R. K. D. (1995). Insects, disease, and military history: The Napoleonic campaigns and historical perceptions. Am. Entomol.

More information

An Example of Classification

An Example of Classification Classification of Insects - Insects Orders (Older Students - 7th and up) Kingdom Animals Phylum Arthropoda Class Insecta Orders: Looking at 9 Orders of Insects: 1) Order Coleoptera Family Beetles 2) Order

More information

INTRODUCTION The word Arthropoda means "jointed legs". Insects, crabs, spiders, millipedes and centipedes are all

INTRODUCTION The word Arthropoda means jointed legs. Insects, crabs, spiders, millipedes and centipedes are all ACTIVITY 4.36 SIX JOINTED LEGS - INSECTS INTRODUCTION The word Arthropoda means "jointed legs". Insects, crabs, spiders, millipedes and centipedes are all Arthropoda. There are more different types of

More information

6 MYRIAPOD PHYLOGENY AND THE RELATIONSHIPS OF CHILOPODA

6 MYRIAPOD PHYLOGENY AND THE RELATIONSHIPS OF CHILOPODA MYRIAPOD PHYLOGENY AND THE RELATIONSHIPS OF CHILOPODA / 143 6 MYRIAPOD PHYLOGENY AND THE RELATIONSHIPS OF CHILOPODA Gregory D. Edgecombe 1 & Gonzalo Giribet 2 RESUMEN. Estudios recientes han propuesto

More information

A working hypothesis of holometabolan relationships

A working hypothesis of holometabolan relationships The Origin of Complete Metamorphosis: Endopterygota (= Holometabola) Hexapoda 300 250 mya Crustacea? Myriapoda? Collembola Protura 85% Insecta = aquatic immatures (** Exopterygota ) Dicondylia Pterygota

More information

Amber Arthropod Key. For most arthropods found in Baltic and Dominican Ambers and some others.

Amber Arthropod Key. For most arthropods found in Baltic and Dominican Ambers and some others. Amber Arthropod Key For most arthropods found in Baltic and Dominican Ambers and some others. Figure 108. Baltic amber pendant containing a spider (Araneae) and harvestman (Opiliones). Figure 108.

More information

Nematoda. Round worms Feeding and Parasitism

Nematoda. Round worms Feeding and Parasitism Nematoda Round worms Feeding and Parasitism Nematoda Have pseudocoelom Live in many environments Parasitic Important decomposers Covered with cuticle Trichinella spiralis see fig 18.8B Nematode Diets and

More information

Ecdysozoa:! Basic characteristics:! Symmetry? Development?! What is it named for?! Hormone involved?!

Ecdysozoa:! Basic characteristics:! Symmetry? Development?! What is it named for?! Hormone involved?! Ecdysozoa:! Basic characteristics:! Symmetry? Development?! What is it named for?! Hormone involved?! Also includes Nematoda and Tardigrada! Which one of these is not like the other?! Arthropoda:! Also

More information

Millipedes Made Easy

Millipedes Made Easy MILLI-PEET, Introduction to Millipedes; Page - 1 - Millipedes Made Easy A. Introduction The class Diplopoda, or the millipedes, contains about 10,000 described species. The animals have a long distinguished

More information

Periplaneta americana (American Cockroach)

Periplaneta americana (American Cockroach) Periplaneta americana (American Cockroach) Order: Blattodea (Cockroaches) Class: Insecta (Insects) Phylum: Arthropoda (Arthropods) Fig. 1. American cockroach, Periplaneta americana. [http://nathistoc.bio.uci.edu/orthopt/periplaneta.htm,

More information

Ideas concerning the phylogenetic relationships among the

Ideas concerning the phylogenetic relationships among the 780 hylogeny of Insects recognition note that populations of head and body lice are separable only statistically on the basis of minor differences in body size; that coloration in human lice is highly

More information

Kingdom Animalia. All animals are multicellular organisms with real tissues and heterotrophic nutrition

Kingdom Animalia. All animals are multicellular organisms with real tissues and heterotrophic nutrition Keywords Kingdom Animalia Poriferan, -s Coelenterate,-s Echinoderm, -s Mollusc, -s Medusa, -s Polyp, -s Arthropod, -s Arachnid, -s Crustacean, -s Myriapod, -s Radula Exoskeleton / endoskeleton Atrial cavity

More information

Honey Bees. Anatomy and Function 9/26/17. Similar but Different. Honey Bee External Anatomy. Thorax (Human Chest): 4 Wings & 6 Legs

Honey Bees. Anatomy and Function 9/26/17. Similar but Different. Honey Bee External Anatomy. Thorax (Human Chest): 4 Wings & 6 Legs Honey Bee Anatomy and Function How Honey Bees are Built and How the Function People Eat: Everything - Meat and Potatoes Omnivores Meat and Vegetables Digest: Stomach & Intestines Excrete: Feces and Urine

More information

Key 1 Key to Insects Orders

Key 1 Key to Insects Orders Key 1 Key to Insects Orders Notes: This key covers insect orders commonly and occasionally observed. However, it does not include all orders. Key #1 is similar, but easier, being limited to insect orders

More information

UNIT: INVERTEBRATE ANIMALS 1º ESO BIOLOGY AND GEOLOGY

UNIT: INVERTEBRATE ANIMALS 1º ESO BIOLOGY AND GEOLOGY UNIT: INVERTEBRATE ANIMALS 1º ESO BIOLOGY AND GEOLOGY 2015/2016 What do they have in common? What are their differences? What is the theme for the next unit? Vertebrates and Invertebrates 1 Label the animals

More information

Geo 302D: Age of Dinosaurs LAB 4: Systematics Part 1

Geo 302D: Age of Dinosaurs LAB 4: Systematics Part 1 Geo 302D: Age of Dinosaurs LAB 4: Systematics Part 1 Systematics is the comparative study of biological diversity with the intent of determining the relationships between organisms. Humankind has always

More information

Aquatic Macroinvertebrates

Aquatic Macroinvertebrates Aquatic Macroinvertebrates Brazoria NWR (Big Slough and Crosstrails Pond) Nov. 2015 - Nov. 2016 Photos by Pete and Peggy Romfh SCUD (SIDE-SWIMMERS) Arthropoda, Sub-Phylum Crustacea, Class Malacostraca,

More information

Going Buggy by Guy Belleranti

Going Buggy by Guy Belleranti Your friend sees a beetle, spider or centipede moving along the ground getting closer... closer and screams, "Eeek! Look at that bug!" But what is a bug? How are beetles, spiders and centipedes alike?

More information

Origin and Evolution of Birds. Read: Chapters 1-3 in Gill but limited review of systematics

Origin and Evolution of Birds. Read: Chapters 1-3 in Gill but limited review of systematics Origin and Evolution of Birds Read: Chapters 1-3 in Gill but limited review of systematics Review of Taxonomy Kingdom: Animalia Phylum: Chordata Subphylum: Vertebrata Class: Aves Characteristics: wings,

More information

Animal Diversity Lecture 8 Winter 2014

Animal Diversity Lecture 8 Winter 2014 Animal Phylogeny 1 Animal Diversity Lecture 8 Winter 2014 Fig. 32.10 Phylum Porifera (sponges) 2 Phylum Cnidaria (corals, jellies, hydras, sea anemones) 3a ~5,500 species Primarily marine Suspension feeders

More information

CHAPTER 3. INSECTA (Aquatic Insects)

CHAPTER 3. INSECTA (Aquatic Insects) Guide to Aquatic Invertebrate Families of Mongolia 2009 CHAPTER 3 (Aquatic Insects) Draft June 17, 2009 34 Chapter 3 3 SUBCLASS Aquatic Insects Aquatic insects are a very abundant and diverse group that

More information

External Anatomy 101

External Anatomy 101 External Anatomy 101 Introduction In Unit 1 you have discovered that insects have three body segments. Can you name them? In this lab activity, we will learn a bit about the function of each of these body

More information

Lecture 11 Wednesday, September 19, 2012

Lecture 11 Wednesday, September 19, 2012 Lecture 11 Wednesday, September 19, 2012 Phylogenetic tree (phylogeny) Darwin and classification: In the Origin, Darwin said that descent from a common ancestral species could explain why the Linnaean

More information

Review Inverts 4/17/15. What Invertebrates have we learned about so far? Porifera. Cnidaria. Ctenophora. Molluscs

Review Inverts 4/17/15. What Invertebrates have we learned about so far? Porifera. Cnidaria. Ctenophora. Molluscs Review Inverts What Invertebrates have we learned about so far? Porifera sponges Cnidaria jellyfishes, sea anemones, coral Ctenophora comb jellies Molluscs snails, bivalves, octopuses, squid, cuglefish

More information

Phylogenetics. Phylogenetic Trees. 1. Represent presumed patterns. 2. Analogous to family trees.

Phylogenetics. Phylogenetic Trees. 1. Represent presumed patterns. 2. Analogous to family trees. Phylogenetics. Phylogenetic Trees. 1. Represent presumed patterns of descent. 2. Analogous to family trees. 3. Resolve taxa, e.g., species, into clades each of which includes an ancestral taxon and all

More information

Page # Diversity of Arthropoda Crustacea Morphology. Diversity of Arthropoda. Diversity of Arthropoda. Diversity of Arthropoda. Arthropods, from last

Page # Diversity of Arthropoda Crustacea Morphology. Diversity of Arthropoda. Diversity of Arthropoda. Diversity of Arthropoda. Arthropods, from last Arthropods, from last time Crustacea are the dominant marine arthropods Crustacea are the dominant marine arthropods any terrestrial crustaceans? Should we call them shellfish? sowbugs 2 3 Crustacea Morphology

More information

UNIT 6 Chapter 14. Coastal Ecosystems: Shrimp Versatile Coastal Critters. Coastal Ecosystems. Learning Outcomes. Chapter 14 Lab/Activity #3

UNIT 6 Chapter 14. Coastal Ecosystems: Shrimp Versatile Coastal Critters. Coastal Ecosystems. Learning Outcomes. Chapter 14 Lab/Activity #3 Coastal Ecosystems UNIT 6 Chapter 14 Name: Section: Date: Chapter 14 Lab/Activity #3 Coastal Ecosystems: Shrimp Versatile Coastal Critters Introduction: Shrimp are very common marine arthropods that rely

More information

ROACHES (แมลงสาบ) # Active and nocturnal insects. # Produce a characteristic offensive adour (scent gland) # Discharge feces & vomit along the way

ROACHES (แมลงสาบ) # Active and nocturnal insects. # Produce a characteristic offensive adour (scent gland) # Discharge feces & vomit along the way ROACHES (แมลงสาบ) # Active and nocturnal insects # Produce a characteristic offensive adour (scent gland) # Discharge feces & vomit along the way # Potential mechanical vectors of pathogens 1 Class Insecta

More information

The Phylogeny of the Extant Hexapod Orders

The Phylogeny of the Extant Hexapod Orders Cladistics 17, 113 169 (2001) doi:10.1006/clad.2000.0147, available online at http://www.idealibrary.com on The Phylogeny of the Extant Hexapod Orders Ward C. Wheeler,* Michael Whiting, Quentin D. Wheeler,

More information

muscles (enhancing biting strength). Possible states: none, one, or two.

muscles (enhancing biting strength). Possible states: none, one, or two. Reconstructing Evolutionary Relationships S-1 Practice Exercise: Phylogeny of Terrestrial Vertebrates In this example we will construct a phylogenetic hypothesis of the relationships between seven taxa

More information

NOTES ON THE APHIDIDAE. (I.) Observations on a Semi-aquatic Aphid, Aphis aquaticus n. sp.

NOTES ON THE APHIDIDAE. (I.) Observations on a Semi-aquatic Aphid, Aphis aquaticus n. sp. Jan., 1908.] Notes on the Aphididae. I. 243 NOTES ON THE APHIDIDAE. (I.) Observations on a Semi-aquatic Aphid, Aphis aquaticus n. sp. C. F. JACKSON. This species is a typical representative of the genus

More information

AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS

AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Riek, E. F., 1964. Merostomoidea (Arthropoda, Trilobitomorpha) from the Australian Middle Triassic. Records of the Australian Museum 26(13): 327 332, plate 35.

More information

TOPIC: INSECTS CLASS: SENIOR TWO, TERM 1 Aim: To study about the common insects LEARNING OUTCOMES

TOPIC: INSECTS CLASS: SENIOR TWO, TERM 1 Aim: To study about the common insects LEARNING OUTCOMES TOPIC: INSECTS CLASS: SENIOR TWO, TERM 1 Aim: To study about the common insects LEARNING OUTCOMES In this unit, you will learn about, the general characteristics of insects main characteristics common

More information

Origin and Evolution of Birds. Read: Chapters 1-3 in Gill but limited review of systematics

Origin and Evolution of Birds. Read: Chapters 1-3 in Gill but limited review of systematics Origin and Evolution of Birds Read: Chapters 1-3 in Gill but limited review of systematics Review of Taxonomy Kingdom: Animalia Phylum: Chordata Subphylum: Vertebrata Class: Aves Characteristics: wings,

More information

Biology 340 Comparative Embryology Lecture 2 Dr. Stuart Sumida. Phylogenetic Perspective and the Evolution of Development.

Biology 340 Comparative Embryology Lecture 2 Dr. Stuart Sumida. Phylogenetic Perspective and the Evolution of Development. Biology 340 Comparative Embryology Lecture 2 Dr. Stuart Sumida Phylogenetic Perspective and the Evolution of Development Evo-Devo So, what is all the fuss about phylogeny? PHYLOGENETIC SYSTEMATICS allows

More information

EGG STAGE. 1. How many eggs does a female Monarch usually lay on one milkweed plant? Given a choice, what age plant, or leaves, does she prefer?

EGG STAGE. 1. How many eggs does a female Monarch usually lay on one milkweed plant? Given a choice, what age plant, or leaves, does she prefer? EGG STAGE 1. How many eggs does a female Monarch usually lay on one milkweed plant? Given a choice, what age plant, or leaves, does she prefer? 2. The egg stage lasts 1-3 days. Look at the egg that you

More information

UNIT 9. THE ANIMAL KINGDOM: INVERTEBRATES

UNIT 9. THE ANIMAL KINGDOM: INVERTEBRATES UNIT 9. THE ANIMAL KINGDOM: INVERTEBRATES 1. The simplest invertebrates 2. Annelids, molluscs and echinoderms 3. Arthropods 4. Insects All living beings belong to the Animal Kingdom have got the following

More information

Unit 19.3: Amphibians

Unit 19.3: Amphibians Unit 19.3: Amphibians Lesson Objectives Describe structure and function in amphibians. Outline the reproduction and development of amphibians. Identify the three living amphibian orders. Describe how amphibians

More information

My insect. Time: 2 hours

My insect. Time: 2 hours 4 Teacher Discovery Card Time: 2 hours Information (suitable for 5-7 and 7-12 year olds) Children use information gathered from a variety of sources to design and make their own insect. This discovery

More information

Species: Panthera pardus Genus: Panthera Family: Felidae Order: Carnivora Class: Mammalia Phylum: Chordata

Species: Panthera pardus Genus: Panthera Family: Felidae Order: Carnivora Class: Mammalia Phylum: Chordata CHAPTER 6: PHYLOGENY AND THE TREE OF LIFE AP Biology 3 PHYLOGENY AND SYSTEMATICS Phylogeny - evolutionary history of a species or group of related species Systematics - analytical approach to understanding

More information

A Key to Identify Insect Orders in Michigan

A Key to Identify Insect Orders in Michigan I A Key to Identify Insect Orders in Michigan by Charlotte Dotson Mary- Jo Germain Amanda McCreless Renee Millard Sara Mitchell This is a dichotomous key developed to help you identify different insect

More information

Field Trip: Harvard Museum of Natural History (HMNH)

Field Trip: Harvard Museum of Natural History (HMNH) Field Trip: Harvard Museum of Natural History (HMNH) Objectives To observe the diversity of animals. To compare and contrast the various adaptations, body plans, etc. of the animals found at the HMNH.

More information

Looking at insects: more keys

Looking at insects: more keys Looking at insects: more keys In this lesson, you will be looking at insects. This includes using a key to identify different kinds of insects as well as observing an insect in its environment. Some examples

More information

Chapter 33B: An Introduction to Vertebrates II The Bilateria. 1. Lophotrochozoa 2. Ecdysozoa 3. Deuterostomia

Chapter 33B: An Introduction to Vertebrates II The Bilateria. 1. Lophotrochozoa 2. Ecdysozoa 3. Deuterostomia Chapter 33B: An Introduction to Vertebrates II The Bilateria 1. Lophotrochozoa 2. Ecdysozoa 3. Deuterostomia Invertebrates Porifera ANCESTRAL PROTIST Cnidaria Common ancestor of all animals Eumetazoa Bilateria

More information

Guide for identification of food items in droppings and regurgitated samples of birds

Guide for identification of food items in droppings and regurgitated samples of birds Guide for identification of food items in droppings and regurgitated samples of birds Katerina Tvardikova Jana Sykorova 2011 Introduction Emetics causing regurgitation of stomach contents, can be useds

More information

ENY 4161/6166 Insect Classification. Florida Hemiptera

ENY 4161/6166 Insect Classification. Florida Hemiptera ENY 4161/6166 Insect Classification Florida Hemiptera (Recognizing suborders; with diagnostic keys to some families of the suborders Auchenorrhyncha and Sternorrhyncha) - Note: identification of families

More information

DIVERSITY IV Animalia II: Ecdysozoan Protostomes and Deuterostomes

DIVERSITY IV Animalia II: Ecdysozoan Protostomes and Deuterostomes NAME: PARTNER: DATE: DIVERSITY IV Animalia II: Ecdysozoan Protostomes and Deuterostomes In this laboratory session we will conclude our examination of organismal diversity by looking at the ecdysozoa the

More information

Meet the Invertebrates Puppet Show!

Meet the Invertebrates Puppet Show! Meet the Invertebrates Puppet Show! Essential Question: What are the different types of invertebrates? Background Information: Most of the invertebrates described in this activity are, like insects, in

More information

Diversity of Animals

Diversity of Animals Classifying Animals Diversity of Animals Animals can be classified and grouped based on similarities in their characteristics. Animals make up one of the major biological groups of classification. All

More information

1. Examine the specimens of sponges on the lab table. Which of these are true sponges? Explain your answers.

1. Examine the specimens of sponges on the lab table. Which of these are true sponges? Explain your answers. Station #1 - Porifera 1. Examine the specimens of sponges on the lab table. Which of these are true sponges? Explain your answers. 2. Sponges are said to have an internal special skeleton. Examine the

More information

Let s Build a Cladogram!

Let s Build a Cladogram! Name Let s Build a Cladogram! Date Introduction: Cladistics is one of the newest trends in the modern classification of organisms. This method shows the relationship between different organisms based on

More information

Vol. XIV, No. 1, March, The Larva and Pupa of Brontispa namorikia Maulik (Coleoptera: Chrysomelidae: Hispinae) By S.

Vol. XIV, No. 1, March, The Larva and Pupa of Brontispa namorikia Maulik (Coleoptera: Chrysomelidae: Hispinae) By S. Vol. XIV, No. 1, March, 1950 167 The Larva and Pupa of Brontispa namorikia Maulik (Coleoptera: Chrysomelidae: Hispinae) By S. MAULIK BRITISH MUSEUM (NATURAL HISTORY) (Presented by Mr. Van Zwaluwenburg

More information

What do these strange words mean?

What do these strange words mean? Bugs What do I need to start? How to draw them Drawing bugs takes practice, so don t expect to draw a perfect picture the first time. Use a notebook and write the date each time you draw to see how your

More information

Anatomy. Name Section. The Vertebrate Skeleton

Anatomy. Name Section. The Vertebrate Skeleton Name Section Anatomy The Vertebrate Skeleton Vertebrate paleontologists get most of their knowledge about past organisms from skeletal remains. Skeletons are useful for gleaning information about an organism

More information

Systematics, Taxonomy and Conservation. Part I: Build a phylogenetic tree Part II: Apply a phylogenetic tree to a conservation problem

Systematics, Taxonomy and Conservation. Part I: Build a phylogenetic tree Part II: Apply a phylogenetic tree to a conservation problem Systematics, Taxonomy and Conservation Part I: Build a phylogenetic tree Part II: Apply a phylogenetic tree to a conservation problem What is expected of you? Part I: develop and print the cladogram there

More information

Phylum Echinodermata. Biology 11

Phylum Echinodermata. Biology 11 Phylum Echinodermata Biology 11 General characteristics Spiny Radial symmetry Water vascular system Endoskeleton Endoskeleton Hard, spiny, or bumpy endoskeleton covered with a thin epidermis. Endoskeleton

More information

Echinoderms. Copyright 2011 LessonSnips

Echinoderms. Copyright 2011 LessonSnips Echinoderms The ocean is home to different creatures from animals that are found on land and the phylum of echinoderms is a prime example. The phylum Echinodermata is a scientific classification of simple

More information

Frog Dissection Information Manuel

Frog Dissection Information Manuel Frog Dissection Information Manuel Anatomical Terms: Used to explain directions and orientation of a organism Directions or Positions: Anterior (cranial)- toward the head Posterior (caudal)- towards the

More information

Biology 340 Comparative Embryology Lecture 12 Dr. Stuart Sumida. Evo-Devo Revisited. Development of the Tetrapod Limb

Biology 340 Comparative Embryology Lecture 12 Dr. Stuart Sumida. Evo-Devo Revisited. Development of the Tetrapod Limb Biology 340 Comparative Embryology Lecture 12 Dr. Stuart Sumida Evo-Devo Revisited Development of the Tetrapod Limb Limbs whether fins or arms/legs for only in particular regions or LIMB FIELDS. Primitively

More information

Name: Date: Hour: Fill out the following character matrix. Mark an X if an organism has the trait.

Name: Date: Hour: Fill out the following character matrix. Mark an X if an organism has the trait. Name: Date: Hour: CLADOGRAM ANALYSIS What is a cladogram? It is a diagram that depicts evolutionary relationships among groups. It is based on PHYLOGENY, which is the study of evolutionary relationships.

More information

MORPHOLOGY AND BIOLOGY OF THE BEDBUG, CIMEX HEMIPTERUS (HEMIPTERA: CIMICIDAE) IN THE LABORATORY

MORPHOLOGY AND BIOLOGY OF THE BEDBUG, CIMEX HEMIPTERUS (HEMIPTERA: CIMICIDAE) IN THE LABORATORY Dhaka Univ. J. Biol. Sci. 21(2): 125-130, 2012 (July) MORPHOLOGY AND BIOLOGY OF THE BEDBUG, CIMEX HEMIPTERUS (HEMIPTERA: CIMICIDAE) IN THE LABORATORY Introduction HUMAYUN REZA KHAN* AND MD. MONSUR RAHMAN

More information

AP Biology. Animal Characteristics. Kingdom: Animals. Body Cavity. Animal Evolution. Invertebrate: Porifera. Invertebrate: Cnidaria.

AP Biology. Animal Characteristics. Kingdom: Animals. Body Cavity. Animal Evolution. Invertebrate: Porifera. Invertebrate: Cnidaria. Kingdom: Animals Eukarya Bacteria Archaea Eukarya Animal Characteristics Heterotrophs must ingest others for nutrients Multicellular complex bodies No cell walls allows active movement Sexual reproduction

More information

Description of the Zoea of Chirostylus dolichopus (Anomura, Galatheoidea, Chirostylidae)

Description of the Zoea of Chirostylus dolichopus (Anomura, Galatheoidea, Chirostylidae) mm^mmmmmm%.% mu^ 65-70H (1992) Bull. Inst. Oceanic Res. & Develop., Tokai Univ. (1992), 13, 65 70 65 Description of the Zoea of Chirostylus dolichopus (Anomura, Galatheoidea, Chirostylidae) Kazunari OGAWA"

More information

INSTITUTE FOR STRATEGIC BIOSPHERIC STUDIES CONFERENCE CENTER HUNTSVILLE, TEXAS

INSTITUTE FOR STRATEGIC BIOSPHERIC STUDIES CONFERENCE CENTER HUNTSVILLE, TEXAS INSTITUTE FOR STRATEGIC BIOSPHERIC STUDIES CONFERENCE CENTER HUNTSVILLE, TEXAS Mantis/Arboreal Ant Species September 2 nd 2017 TABLE OF CONTENTS 1.0 INTRODUCTION... 3 2.0 COLLECTING... 4 3.0 MANTIS AND

More information

Figure 1 Background Information to the phylum Arthropoda and appears to not have changed for

Figure 1 Background Information to the phylum Arthropoda and appears to not have changed for Artemia salina Figure Background Information Artemia salina belongs to the phylum Arthropoda and appears to not have changed for the last 00 million years. Most people refer to them as brine shrimp or

More information

Class Insecta: Order Hemiptera True Bugs

Class Insecta: Order Hemiptera True Bugs Features Class Insecta: Order Hemiptera True Bugs Sucking mouthparts, simple metamorphosis Forewings of most species divided into leathery and membranous halves ( Hemi =half; -ptera =wing) Wings held flat

More information

AMAZING ARTHROPODS! 2018 STUDY GUIDE

AMAZING ARTHROPODS! 2018 STUDY GUIDE AMAZING ARTHROPODS! 2018 STUDY GUIDE Written by: Mark VanderWerp, BCE Table of Contents: Summary of Knowledge Necessary for this event pg. 1-2 Arthropod Taxonomy pg. 3 Summary of Insect Orders pg. 4-8

More information

INQUIRY & INVESTIGATION

INQUIRY & INVESTIGATION INQUIRY & INVESTIGTION Phylogenies & Tree-Thinking D VID. UM SUSN OFFNER character a trait or feature that varies among a set of taxa (e.g., hair color) character-state a variant of a character that occurs

More information

LABORATORY #10 -- BIOL 111 Taxonomy, Phylogeny & Diversity

LABORATORY #10 -- BIOL 111 Taxonomy, Phylogeny & Diversity LABORATORY #10 -- BIOL 111 Taxonomy, Phylogeny & Diversity Scientific Names ( Taxonomy ) Most organisms have familiar names, such as the red maple or the brown-headed cowbird. However, these familiar names

More information

BREVIORA LEUCOLEPIDOPA SUNDA GEN. NOV., SP. NOV. (DECAPODA: ALBUNEIDAE), A NEW INDO-PACIFIC SAND CRAB. Ian E. Efford 1

BREVIORA LEUCOLEPIDOPA SUNDA GEN. NOV., SP. NOV. (DECAPODA: ALBUNEIDAE), A NEW INDO-PACIFIC SAND CRAB. Ian E. Efford 1 ac lc BREVIORA CAMBRIDGE, MASS. 30 APRIL, 1969 NUMBER 318 LEUCOLEPIDOPA SUNDA GEN. NOV., SP. NOV. (DECAPODA: ALBUNEIDAE), A NEW INDO-PACIFIC SAND CRAB Ian E. Efford 1 ABSTRACT. Leucolepidopa gen. nov.

More information

Bio 1B Lecture Outline (please print and bring along) Fall, 2006

Bio 1B Lecture Outline (please print and bring along) Fall, 2006 Bio 1B Lecture Outline (please print and bring along) Fall, 2006 B.D. Mishler, Dept. of Integrative Biology 2-6810, bmishler@berkeley.edu Evolution lecture #4 -- Phylogenetic Analysis (Cladistics) -- Oct.

More information

Birds & Mammals. Chapter 15

Birds & Mammals. Chapter 15 Birds & Mammals Chapter 15 What is a Bird? Vertebrate Endothermic Feathered 4 chambered heart Egg laying Fore-limbs adapted for flight Bones nearly hollow (allow for lighter weight) Bird Internal Anatomy

More information

A REDESCRIPTION OF THE HOLOTYPE OF CALLIANASSA MUCRONATA STRAHL, 1861 (DECAPODA, THALASSINIDEA)

A REDESCRIPTION OF THE HOLOTYPE OF CALLIANASSA MUCRONATA STRAHL, 1861 (DECAPODA, THALASSINIDEA) Crustaceana 52 (1) 1977, E. J. Brill, Leiden A REDESCRIPTION OF THE HOLOTYPE OF CALLIANASSA MUCRONATA STRAHL, 1861 (DECAPODA, THALASSINIDEA) BY NASIMA M. TIRMIZI Department of Zoology, University of Karachi,

More information

30-3 Amphibians Slide 1 of 47

30-3 Amphibians Slide 1 of 47 1 of 47 What Is an Amphibian? What Is an Amphibian? An amphibian is a vertebrate that, with some exceptions: lives in water as a larva and on land as an adult breathes with lungs as an adult has moist

More information

Geo 302D: Age of Dinosaurs. LAB 7: Dinosaur diversity- Saurischians

Geo 302D: Age of Dinosaurs. LAB 7: Dinosaur diversity- Saurischians Geo 302D: Age of Dinosaurs LAB 7: Dinosaur diversity- Saurischians Last lab you were presented with a review of major ornithischian clades. You also were presented with some of the kinds of plants that

More information

Understanding Evolutionary History: An Introduction to Tree Thinking

Understanding Evolutionary History: An Introduction to Tree Thinking 1 Understanding Evolutionary History: An Introduction to Tree Thinking Laura R. Novick Kefyn M. Catley Emily G. Schreiber Vanderbilt University Western Carolina University Vanderbilt University Version

More information

Introduction to Cladistic Analysis

Introduction to Cladistic Analysis 3.0 Copyright 2008 by Department of Integrative Biology, University of California-Berkeley Introduction to Cladistic Analysis tunicate lamprey Cladoselache trout lungfish frog four jaws swimbladder or

More information

NAUSHONIA PAN AMEN SIS, NEW SPECIES (DECAPODA: THALASSINIDEA: LAOMEDIIDAE) FROM THE PACIFIC COAST OF PANAMA, WITH NOTES ON THE GENUS

NAUSHONIA PAN AMEN SIS, NEW SPECIES (DECAPODA: THALASSINIDEA: LAOMEDIIDAE) FROM THE PACIFIC COAST OF PANAMA, WITH NOTES ON THE GENUS 5 October 1982 PROC. BIOL. SOC. WASH. 95(3), 1982, pp. 478-483 NAUSHONIA PAN AMEN SIS, NEW SPECIES (DECAPODA: THALASSINIDEA: LAOMEDIIDAE) FROM THE PACIFIC COAST OF PANAMA, WITH NOTES ON THE GENUS Joel

More information

Key to Common Pond Invertebrates

Key to Common Pond Invertebrates Key to Common Pond Invertebrates (modified from Voshell, J.R. 2002. A guide to common freshwater invertebrates of North America. McDonald and Woodward, Blacksburg, VA; and B.L. Peckarsky et al. 1990. Freshwater

More information

Classification. Chapter 17. Classification. Classification. Classification

Classification. Chapter 17. Classification. Classification. Classification Classification Chapter 17 Classification Classification is the arrangement of organisms into orderly groups based on their similarities. Classification shows how organisms are related and different. Classification

More information

A. Body Temperature Control Form and Function in Mammals

A. Body Temperature Control Form and Function in Mammals Taxonomy Chapter 22 Kingdom Animalia Phylum Chordata Class Mammalia Mammals Characteristics Evolution of Mammals Have hair and First appear in the mammary glands Breathe air, 4chambered heart, endotherms

More information

Subphylum Vertebrata

Subphylum Vertebrata Subphylum Vertebrata Superclass Agnatha (jawless vertebrates) Class Myxini Class Cephalaspidomorphi Superclass Gnathostomata (jawed vertebrates) Class Chondrichthyes Class Osteichthyes Class Amphibia Class

More information

Cladistics (reading and making of cladograms)

Cladistics (reading and making of cladograms) Cladistics (reading and making of cladograms) Definitions Systematics The branch of biological sciences concerned with classifying organisms Taxon (pl: taxa) Any unit of biological diversity (eg. Animalia,

More information

1 EEB 2245/2245W Spring 2017: exercises working with phylogenetic trees and characters

1 EEB 2245/2245W Spring 2017: exercises working with phylogenetic trees and characters 1 EEB 2245/2245W Spring 2017: exercises working with phylogenetic trees and characters 1. Answer questions a through i below using the tree provided below. a. Identify the taxon (or taxa if there is more

More information

Bugs, Brook Trout, and Water Quality: How Are They Connected?

Bugs, Brook Trout, and Water Quality: How Are They Connected? Watershed Connections Lesson 5 Bugs, Brook Trout, and Water Quality: How Are They Connected? What is a Macroinvertebrate? Large enough to be seen with the unaided eye. Without a backbone: In = no vertebrate

More information

Modern taxonomy. Building family trees 10/10/2011. Knowing a lot about lots of creatures. Tom Hartman. Systematics includes: 1.

Modern taxonomy. Building family trees 10/10/2011. Knowing a lot about lots of creatures. Tom Hartman. Systematics includes: 1. Modern taxonomy Building family trees Tom Hartman www.tuatara9.co.uk Classification has moved away from the simple grouping of organisms according to their similarities (phenetics) and has become the study

More information

A NEW AUSTROSQUILLA (STOMATOPODA) FROM THE

A NEW AUSTROSQUILLA (STOMATOPODA) FROM THE A NEW AUSTROSQUILLA (STOMATOPODA) FROM THE MARQUESAS ISLANDS BY ALAIN MICHEL Centre O.R.S.T.O.M., Noumea, New Caledonia and RAYMOND B. MANNING Smithsonian Institution, Washington, U.S.A. The At s,tstrosqzlilla

More information