LIZARD RADIATIONS. On major land-bridge islands with favorable climates (i.e., in the tropical, dry, and temperate zones) both liz- MIGUEL VENCES

Size: px
Start display at page:

Download "LIZARD RADIATIONS. On major land-bridge islands with favorable climates (i.e., in the tropical, dry, and temperate zones) both liz- MIGUEL VENCES"

Transcription

1 FURTHER READING Agardy, D. T Scientific research opportunities at Palmyra atoll. A report submitted to The Nature Conservancy. Cobb, K. M., C. D. Charles, H. Cheng, and R. L. Edwards El Niño Southern Oscillation and tropical Pacific climate during the last millennium. Nature 424: Davis, A. S., L. B. Gray, D. A. Clague, and J. R. Hein The Line Islands revisited: New 40 Ar/ 39 Ar geochronologic evidence for episodes of volcanism due to lithospheric extension. Geochemistry, Geophysics, Geosystems: doi: /2001GC Dawson, E. Y Changes in Palmyra atoll and its vegetation through the activities of man Pacific Naturalist 1: 51. Dinsdale, E. A., O. Pantos, S. Smriga, R. A. Edwards, F. Angly, L. Wegley, M. Hatay, D. Hall, E. Brown, M. Haynes, L. Krause, E. Sala, S. A. Sandin, R. Vega Thurber, B. L. Willis, F. Azam, N. Knowlton, and F. Rohwer Microbial ecology of four coral atolls in the northern Line Islands. PLoS ONE 3: e1584. Handler, A. T., D. S. Gruner, W. P. Haines, M. W. Lange, and K. Y. Kaneshiro Arthropod surveys on Palmyra atoll, Line Islands, and insights into the decline of the native tree Pisonia grandis (Nyctaginaceae). Pacific Science 61: Keating, B. H Insular geology of the Line Islands, in Geology and offshore mineral resources of the central Pacific basin, Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, vol. 14. B. H. Keating and B. R. Bolton, eds. New York: Springer-Verlag, Sandin, S. A., J. E. Smith, E. E. DeMartini, E. A. Dinsdale, S. D. Donner, A. M. Friedlander, T. Konotchick, M. Malay, J. E. Maragos, D. Obura, O. Pantos, G. Paulay, M. Richie, F. Rohwer, R. E. Schroeder, S. Walsh, J. B. C. Jackson, N. Knowlton, and E. Sala Baselines and degradation of coral reefs in the northern Line Islands. PLoS ONE 3: e1548. UNESCO Central Pacific World Heritage Project, International Workshop Report. Woodrofe, C. D., and R. F. McLean Pleistocene morphology and Holocene emergence of Christmas (Kiritimati) Island, Pacific Ocean. Coral Reefs 17: LIZARD RADIATIONS MIGUEL VENCES Technical University of Braunschweig, Germany Lizards belong to the clade Squamata, together with snakes, and among nonflying terrestrial vertebrates, they are the ones most commonly observed on islands. Lizards are characterized by a great facility in colonizing islands and adapting to novel ecological circumstances by changes in their morphology, physiology, and reproductive biology. They have consequently become an important model group for the inferential and experimental study of adaptive radiations. LIZARDS ON ISLANDS On major land-bridge islands with favorable climates (i.e., in the tropical, dry, and temperate zones) both liz- FIGURE 1 Emblematic island lizards. (A) Gallotia stehlini, Gran Canaria. (B) Gallotia galloti, Tenerife. (C) Chalcides sexlineatus, Gran Canaria. (D) Tarentola delalandii, Tenerife. These species and their relatives have originated on the Canary Islands. Photographs by Miguel Vences. 558 LIZARD RADIATIONS Gillespie08_L.indd 558 4/20/09 11:46:45 AM

2 ards and snakes are commonly encountered, with snake species richness often being similar to lizard species richness. On 14 major islands and island groups of the Mediterranean Sea, there are 152 occurrences of 30 species of lizards and 28 species of snakes. However, native extant snakes are missing on many smaller islands and on oceanic archipelagoes such as the Macaronesian Islands (Canary and Cape Verde Islands, Savage Islands, Madeira, and the Azores), where native species and even endemic radiations of lizards are present (Fig. 1). The most remote oceanic islands (e.g., Hawaii) are devoid of both native lizards and snakes. Although within-island diversification is rare in snakes and is limited to very large islands such as Madagascar, lizards have diversified on medium-sized islands such as the Greater Antilles as well (see below). Of the currently known ~5000 species and 26 families of lizards, representatives of the Gekkonidae, Iguanidae, Lacertidae, and Scincidae are most commonly encountered on islands. Continental islands, especially, may frequently act as an evolutionary reservoir by enabling the survival of remnants of lineages that became extinct or very rare on the mainland. Such is the case of the tuataras, two species of lizard-like reptiles which are the last extant representatives of the Sphenodontia (the sister group of squamates). At present, tuataras are confined to various small islands off New Zealand, although fossil remains demonstrate their past presence on the New Zealand mainland, and that of their relatives on other continents. On the Balearic Islands in the Mediterranean Sea, the lizard Podarcis lilfordi is present only on tiny offshore islands surrounding the larger islands of Mallorca and Menorca, where they are extinct. On Madagascar, the radiation of snakes in the subfamily Pseudoxyrhophiinae is very diverse, but FIGURE 2 The largest lizard worldwide, the Komodo dragon, Varanus komodoensis. Photograph by Thomas Ziegler. FIGURE 3 Both of the smallest lizards worldwide occur on islands. (A) The gecko Sphaerodactylus ariasae occurs on Isla Beata and adjacent areas of Hispaniola. Photograph by S. Blair Hedges. (B) Adult male Malagasy leaf chameleon of an undescribed species in the genus Brookesia from the extreme north of Madagascar. Photograph by Frank Glaw. this lineage has only a few representatives in Africa, where it probably has been replaced by other snakes. Both the largest and smallest extant lizards occur on islands: The largest is the Komodo dragon (Varanus komodoensis) with a maximum snout vent length of over 1500 mm (Fig. 2); the smallest (Fig. 3) are two species of Sphaerodactylus geckos (S. ariasae and S. parthenopion) from the Caribbean, with adult snout vent lengths of about 16 mm, and several species of Malagasy leaf chameleons (Brookesia) with adult snout vent lengths of mm. Lizards appear to show a trend of island gigantism and dwarfism opposite to what is generally considered as a rule: In lineages of small lizards, the island populations and species become even smaller, and in lineages of large forms, the island representatives become even larger, especially in carnivorous taxa. Snakes also show size changes in island populations and species, and snakes that evolved to become small on islands did so to a relatively greater degree than those that became large. The observed pattern suggests that snake body size is principally influenced by prey size, with large snakes mainly feeding on nesting seabirds and small snakes mainly feeding on lizards. Many island lizards have adapted to resources that differ from those available on the nearby mainland. The most famous is the marine iguana from the Galápagos (Amblyrhynchus cristatus), the only lizard that feeds on algae while diving in the ocean. Many lizards of the family Lacertidae were originally insectivorous but became herbivorous on islands. In fact, herbivory in mainland lineages may be an important preadaptation that allows for successful colonization of island habitats. A further intriguing difference between island and mainland populations of lizards is population density, which is generally one order of magnitude higher on islands. This phenomenon is likely driven by distinctly lower numbers of predators and competitors. These same factors may also have allowed island lizards to expand LIZARD RADIATIONS 559 Gillespie08_L.indd 559 4/20/09 11:46:46 AM

3 their diet to include nectar, pollen, and fruit. Indeed, in several island ecosystems, lizards also occupy an important role as pollinators and seed dispersers. Few studies have addressed changes in reproductive strategy in island populations of lizards, but in species of the family Lacertidae a trend of reduced clutch size and larger egg size on islands has been noted. COLONIZATION OF ISLANDS BY LIZARDS Recent years have seen a paradigm shift in our understanding of the occurrence of many taxa on islands. This has involved a shift from the dominance of vicariance explanations to hypotheses in which dispersal plays at least an equally important role. In general, the mode of reproduction of lizards and snakes, with internal fertilization, favors overseas dispersal because the arrival of a single gravid female to an island can be sufficient to give rise to a new population. For lizards, there is no doubt that their dispersal capacities are high and that they have on many occasions colonized islands over water from the mainland or from other islands. For green iguanas, direct evidence exists that after a hurricane in 1995, at least 15 individuals arrived on a mat of logs and uprooted trees on the eastern beaches of Anguilla and other islands in the Caribbean, and some specimens survived there for at least three years. Molecular genetic analyses have provided evidence for various events of long-distance dispersal between Africa and South America (e.g., in geckos of the genera Tarentola and Hemidactylus, and in skinks of the genus Trachylepis). For example, Trachylepis atlantica from the Fernando de Noronha Archipelago in the Atlantic, 350 km east of the Brazilian coast, belongs to this mainly African and Malagasy genus rather than to the related Neotropical genus Mabuya. Its ancestors presumably colonized by overseas dispersal from Africa rather than from nearby South America. Native populations of lizards (and often endemic species) are found on many oceanic islands: on major archipelagos such as Macaronesia, the Galápagos, the Gulf of Guinea islands, the Comoros, and the Mascarenes, but also on many small and isolated islands. The Australian region, including small islands such as those of the Solomon and Bismarck archipelagoes, harbors a massive radiation of the scincid genus Sphenomorphus, and other skinks (genus Emoia) have radiated on most islands in the southwestern Pacific, including, among many others, the Fiji, New Caledonia, Solomon, and Bismarck archipelagoes. This further demonstrates the capacity for overseas dispersal of lizards. FIGURE 4 An endemic species of chameleon from the Comoro island of Mayotte, Furcifer polleni. Photograph by Frank Glaw. Inverse routes of colonization, from islands back to the mainland, have occurred as well. This appears to be the case for a Central and South American clade within the genus Anolis, which probably originated from a West Indian ancestor, and it is possibly also true for chameleons, which may have dispersed multiple times from Madagascar to mainland Africa, and which certainly have dispersed from Madagascar to Mayotte (Fig. 4). On the Gulf of Guinea islands (São Tomé, Principe, and Annobon), a relatively high proportion of endemic burrowing species of lizards and snakes occur, indicating that the capacity of overseas dispersal also extends to species living in humid soil and leaf litter. A combination of ocean currents, floating islands, and reduced surface salinity caused by freshwater discharges from large rivers may be favorable to overseas dispersal events in general and may also enable such soil-dwelling species to colonize islands. Eggs of some lizards are known to be resistant to immersion in seawater. In the case of Anolis sagrei, this may explain the survival of populations of this lizard on small islands vulnerable to hurricanes, but it also may allow the overseas rafting of lizard eggs in tree holes or mats of vegetation. In some cases, commensal species of lizards have been translocated by humans. Several species of geckos of the genus Hemidactylus have a transcontinental distribution that in some cases is due to natural colonization but often may reflect deliberate or, more probably, accidental introductions. Lipinia noctua, a scincid lizard that lives alongside humans on islands of the central and eastern Pacific, displays a phylogeographic pattern concordant with the express train hypothesis: Specimens may have been transported as stowaways on early Polynesian canoes during the rapid human colonization of Polynesian islands. 560 LIZARD RADIATIONS Gillespie08_L.indd 560 4/20/09 11:46:46 AM

4 PATTERNS OF INSULAR LIZARD RADIATIONS FIGURE 5 Galápagos iguanas. (A) The marine iguana, Amblyrhynchus cristatus. Photograph by Ylenia Chiari. (B) A terrestrial iguana, Conolophus subcristatus. Photograph by Scott Glaberman. The process of speciation can be either (1) adaptive (i.e., the process of an ancestral population diverging and giving rise to two daughter lineages adapted to different niches) or (2) nonadaptive (e.g., the separation of the daughter species by geographic barriers or by differentiation of features that serve for species recognition). Most lizard radiations on smaller islands probably belong to the category of nonadaptive and allopatric speciation on different islands. This same mode of speciation has also taken place within some islands of sufficient size. A few possible examples also exist for sympatric adaptive speciation within an island. As an instance of nonadaptive speciation on different islands, the western Canary Islands are populated by small radiations of skinks and geckos (Chalcides and Tarentola), but on each island or group of islands, only one species of each genus occurs. The situation is slightly more complex in the Canarian lacertid lizards, genus Gallotia: Here an initial split is observed between large-sized and small-sized species, and sympatry occurs only between (ecologically strongly differentiated) representatives of either group (on Hierro, Gomera, Tenerife, and probably La Palma, if extant species and natural occurrences are considered). Day geckos of the genus Phelsuma have radiated on the Seychelles and Mascarenes, and on each of these two archipelagoes there is a monophyletic lineage of various species and subspecies. At least on the Seychelles, the available evidence favors allopatric speciation of the three endemic taxa on different islands, with secondary sympatry in some cases. Crucial to test hypotheses of radiation on islands are robust phylogenies. However, critical data on the interplay of dispersal and vicariance can be provided by the geological age of an island or of its last connection to the mainland, and hence the age of evolutionary splits in the lineage under study. For example, the two Galápagos iguanas (the terrestrial genus Conolophus and the marine iguana Amblyrhynchus; Fig. 5) occur on the same islands and do form a monophyletic group. This could be interpreted as an example of speciation by ecological specialization under sympatric conditions. However, the age of the evolutionary divergence between these species predates the geological origin of the current Galápagos Islands. This indicates that either (1) they must have diverged on a previous, now submerged land mass, or (2) both species originated on the mainland, they colonized the Galápagos independently, and their mainland relatives subsequently went extinct. In general, the possibility of extinction must always be taken into account to understand the biogeographic history of lizard populations on islands. The best-studied case of an insular lizard radiation is that of the Caribbean genus Anolis (Iguanidae), the anoles, which are among the most common terrestrial vertebrates in the Caribbean and are found on almost every island in this region. There are over 400 species of anoles, of which nearly 150 are Caribbean. Their origin has been estimated at around 40 million years ago, and fossil specimens preserved in amber are known from the Oligocene to the Miocene of the Dominican Republic. The patterns of anole radiation have been intensively studied by Jonathan B. Losos and colleagues. Summaries are found in Losos (1998) and Losos and Thorpe (2004), from where much of the following information has been extracted. Anoles are very good dispersers, evidenced by cases of related taxa occurring on islands of great geographic distance. However, by far the highest proportion of Caribbean anoles are endemic to single island banks (more than 85%). A few cases of natural hybridization are known, but LIZARD RADIATIONS 561 Gillespie08_L.indd 561 4/20/09 11:46:47 AM

5 in general, mismating among species of these lizards is prevented by the throat fans ( dewlaps ) of males, which show specific colors and patterns used in species recognition. In fact, sympatric species of anoles always differ in the size, color, or patterning of their dewlaps. Up to 11 species of anoles can coexist at a single site, and such sympatric species almost always differ in terms of habitat use and morphology or physiology. The number of anole species coexisting on a certain island is significantly correlated with island size. Considering only small islands (i.e., islands of a surface of 1500 km 2 or less), the species area relationship is stronger for islands that were in the past connected by land bridges to other land masses than for isolated islands, highlighting the importance of historical effects: Land-bridge islands probably had a higher number of species at the time of isolation, and through subsequent extinctions, species numbers adjusted to the island-specific ecological carrying capacity. In contrast, isolated islands depend fully on over-water colonization as the source for species. Isolated islands mostly are populated by a single species of anole only, with a maximum of two species per island (which then differ in their ecology). Apparently, colonization of small isolated islands by anoles can be successful only if (1) the island does not yet harbor any anole population or (2) the island is populated by an anole species that differs in ecological requirements from the new colonizers. Evolutionary diversification of anoles appears to occur on a single island when its size is above a certain threshold. In the Caribbean, within-island diversification has occurred on the Greater Antilles (Jamaica, Puerto Rico, Hispaniola, and Cuba). Each of these large islands harbors endemic divergent lineages, which contain various species and, hence, very probably originated on the island. Within-island speciation can be invoked for at least 70% of the Greater Antillean anoles. A few examples from smaller islands or island groups exist of cooccurrence of endemic taxa that could have arisen on the same island, but these cases are not compelling. Hence, a certain island area is necessary for within-island speciation, a conclusion that highlights the importance of geography for this process. The Anolis radiations on the four Greater Antillean islands (although phylogenetically independent) show recurrent patterns. As was first pointed out by Ernest Williams, different types of habitat specialists (ecomorphs) occur on all or most of the Greater Antilles. These are usually represented by several species on each island (Figs. 6 8). Initially six ecomorphs were proposed, but others have since been distinguished. Interestingly, molecular FIGURE 6 Ecomorphs of Caribbean Anolis. All species shown are from Hispaniola. Names roughly denote the preferred habitat of each ecomorph. (A) Crown giant: Anolis baleatus. (B) Trunk crown: A. coelestinus. Note that the photographs are not to scale; Crown Giants are much larger than all other ecomorphs. Photographs by S. Blair Hedges. FIGURE 7 Ecomorphs of Caribbean Anolis, continued. (A) Trunk: A. christophei. (B) Trunk ground: A. cybotes. Photographs are not to scale. Photographs by S. Blair Hedges. 562 LIZARD RADIATIONS Gillespie08_L.indd 562 4/29/09 4:19:04 PM

6 Cuba was fragmented during the Miocene. The Anolis alutaceus group, also on Cuba, contains 12 species with narrow distributions, mostly centered on different mountain ranges, a pattern that is also seen in other groups. Which prevalent pattern of species formation gave rise to the current diversity of anoles? Adaptive speciation in sympatry or parapatry may occur in Caribbean anoles, but it is probably not the main driving force explaining their diversity. In many cases, populations became isolated on small land-bridge islands or reached isolated small islands by overseas dispersal. Geographically and thus genetically separated from other anole populations, they evolved different morphologies and dewlaps, probably largely because of adaptation to new ecological conditions. On the larger islands, species belonging to the main ecomorphs underwent allopatric speciation (e.g., on different mountain ranges or on parts of their island that were separated by water barriers in periods of rising sea levels). As summarized in the following section, many examples indicate that adaptation can occur in the absence of speciation in Caribbean anoles. But it is still uncertain how the initial differentiation of ecomorphs on each of the Greater Antillean islands took place. FIGURE 8 Ecomorphs of Caribbean Anolis, continued. (A) Stream: A. eugenegrahami. (B) Grass: A. semilineatus. (C) Twig: A. placidus. Photographs are not to scale. Photographs by S. Blair Hedges. data show that, with two exceptions, the ecomorphs arose independently on the different islands: Different ancestors diversified independently and gave rise to the same ecological and morphological adaptations. Species belonging to different ecomorphs usually occur sympatrically, but species belonging to the same ecomorph generally are geographically separated within an island (and have different dewlap colors or patterning). In addition to the six main ecomorphs, many islands harbor further habitat specialists, but these usually occur on a single island only. In several cases, the different species of one ecomorph occur in geographically separated populations scattered across an island. In the Anolis carolinensis group, three evolutionary lineages can be distinguished and have ranges corresponding to three paleo-archipelagoes into which PHYLOGEOGRAPHY AND EXPERIMENTAL TESTS OF SELECTION Deciphering radiations is possible by looking at general patterns across a whole group or by examining in more detail the microevolutionary processes. Comparison of DNA sequences allows phylogeographical analyses where chiefly the geographical distribution of differentiated alleles (haplotypes) is mapped, and the phylogenetic relationships among these haplotypes is determined. The assumption is that haplotypes evolve through mutation, and different haplotypes get fixed in genetically isolated populations. In various studies on anoles and Canarian lizards, Roger S. Thorpe and colleagues have found evidence for discordance between historical and adaptive patterns. For example, in Gallotia lizards on the Canarian island of Tenerife, a historical boundary of mitochondrial haplotype lineages exists between western and northeastern areas, whereas within both groups, morphological differences were found between northern and southern populations, reflecting strong ecological differences between the humid north and arid south of the island. On Dominica, Anolis oculatus shows a complex phylogeographical structure that is not fully concordant with the phenotypic variability encountered. These examples demonstrate that morphological adaptations to local conditions, especially in terms of col- LIZARD RADIATIONS 563 Gillespie08_L.indd 563 4/29/09 4:19:06 PM

7 oration, can evolve very fast in island lizards. This is also witnessed by the large variability of lacertid lizard species inhabiting Mediterranean islands (e.g., Adriatic islands, satellite islands of the Balearics, or Tyrrhenic islands in Greece). From many of these archipelagoes, a plethora of subspecies have been described based on color patterns and partly on variation in scale numbers, but molecular studies have rarely found any significant differentiation between these populations, indicating that the external differences evolved extremely rapidly, on a geological timescale. Other work has yielded evidence that in Anolis sagrei, the number of body scales increases with increasing precipitation and with decreasing temperature in open arid habitats, and the variation in scale numbers is probably heritable. In further experiments, the effects of a potential predator (the ground-dwelling lizard Leiocephalus carinatus) on the behavior of Anolis sagrei was tested by introducing the potential predator on six small islands on the Bahamas and using six other predator-free islands as control sites. As a result, anoles altered their behavior by using the ground less often, but in addition, a strong selection took place: Surviving specimens on the experimental islands had larger body sizes and longer hindlimbs than those on control sites, probably reflecting their better capacities to escape. Evidence for strong selection pressures acting on island lizards also comes from further experimental studies. The Dominican Anolis oculatus displays various ecomorphological variants related to different conditions between the east and west coasts and the montane regions of the island. In experiments, lizards were translocated to large lizard-proof enclosures in regions occupied by other habitat types than those in their source population. Morphology (coloration, scale counts, body proportions) of the translocated lizards were scored, and each lizard individually marked. Several months later, survivors were collected and identified. Morphological differences were found between survivors and non-survivors (e.g., of specimens of the montane population in enclosures of the relatively xeric west coast), and the intensity of selection was dependent on the magnitude of ecological change experienced by the specimens in the enclosures. How these intraspecific processes of fast morphological variation relate to the actual process of species formation and adaptive radiation is not clear. Evidence of parapatric forms with restricted gene flow among them comes from the islands of Dominica and Martinique; on Martinique this may constitute evidence for adaptive (ecological) species formation because the forms are distinguished by current habitat and not by historical allopatry. It seems clear that these lizards have a strong potential to adapt to new ecological conditions by changes in morphology and coloration, and this may have favored adaptive speciation (mostly under allopatric conditions). This may also be a factor explaining the recurrent evolution of similar ecomorphs. SEE ALSO THE FOLLOWING ARTICLES Adaptive Radiation / Convergence / Dispersal / Komodo Dragons / Snakes FURTHER READING Losos, J. B Integrative approaches to evolutionary ecology: Anolis lizards as model systems. Annual Reviews of Ecology and Systematics 25: Losos, J. B Ecological and evolutionary determinants of the speciesarea relationship in Caribbean anoline lizards, in Evolution on islands. P. R. Grant, ed. Oxford: Oxford University Press, Losos, J. B., and R. S. Thorpe Evolutionary diversification of Caribbean Anolis lizards, in Adaptive speciation. U. Dieckmann, M. Doebeli, J. A. J. Metz, and D. Tautz, eds. Cambridge: Cambridge University Press, Olesen, J. M., and A. Valido Lizards as pollinators and seed dispersers: an island phenomenon. Trends in Ecology and Evolution 18: Williams, E. E Ecomorphs, faunas, island size, and diverse end points in island radiations of Anolis, in Lizard ecology. R. B. Huey, E. R. Pianka, and T. W. Schoener, eds. Cambridge, MA: Harvard University Press, LOPHELIA OASES SANDRA BROOKE Marine Conservation Biology Institute, Bellevue, WA The deep-water stony coral Lophelia pertusa (Linnaeus 1758) creates extensive and complex structures on hardbottomed areas in the deep sea, including continental shelf bedrock, lithified sediment mounds, volcanic basalt, and (microbially mediated) authigenic carbonate. Large colonies of L. pertusa have abundant tangled branches that provide habitats for diverse and abundant associated communities. These long-lived and slow-growing coral ecosystems are currently under threat globally from negative human impact, and although some areas have been placed under protective legislation, continued international effort is needed to ensure the future of these valuable resources. CORAL BIOLOGY There are several species of framework-building deep-water corals (Lophelia pertusa, Oculina varicosa, 564 LOPHELIA OASES Gillespie08_L.indd 564 4/20/09 11:46:50 AM

The Making of the Fittest: LESSON STUDENT MATERIALS USING DNA TO EXPLORE LIZARD PHYLOGENY

The Making of the Fittest: LESSON STUDENT MATERIALS USING DNA TO EXPLORE LIZARD PHYLOGENY The Making of the Fittest: Natural The The Making Origin Selection of the of Species and Fittest: Adaptation Natural Lizards Selection in an Evolutionary and Adaptation Tree INTRODUCTION USING DNA TO EXPLORE

More information

The Origin of Species: Lizards in an Evolutionary Tree

The Origin of Species: Lizards in an Evolutionary Tree The Origin of Species: Lizards in an Evolutionary Tree NAME DATE This handout supplements the short film The Origin of Species: Lizards in an Evolutionary Tree. 1. Puerto Rico, Cuba, Jamaica, and Hispaniola

More information

Biodiversity and Distributions. Lecture 2: Biodiversity. The process of natural selection

Biodiversity and Distributions. Lecture 2: Biodiversity. The process of natural selection Lecture 2: Biodiversity What is biological diversity? Natural selection Adaptive radiations and convergent evolution Biogeography Biodiversity and Distributions Types of biological diversity: Genetic diversity

More information

LIZARD EVOLUTION VIRTUAL LAB

LIZARD EVOLUTION VIRTUAL LAB LIZARD EVOLUTION VIRTUAL LAB Answer the following questions as you finish each module of the virtual lab or as a final assessment after completing the entire virtual lab. Module 1: Ecomorphs 1. At the

More information

Name Class Date. How does a founding population adapt to new environmental conditions?

Name Class Date. How does a founding population adapt to new environmental conditions? Open-Ended Inquiry Skills Lab Additional Lab 8 Ecosystems and Speciation Problem How does a founding population adapt to new environmental conditions? Introduction When the hurricane s winds died down,

More information

"Have you heard about the Iguanidae? Well, let s just keep it in the family "

Have you heard about the Iguanidae? Well, let s just keep it in the family "Have you heard about the Iguanidae? Well, let s just keep it in the family " DAVID W. BLAIR Iguana iguana is just one of several spectacular members of the lizard family Iguanidae, a grouping that currently

More information

The Origin of Species: Lizards in an Evolutionary Tree

The Origin of Species: Lizards in an Evolutionary Tree The Origin of Species: Lizards in an Evolutionary Tree OVERVIEW Lizards in an Evolutionary Tree is one of three films in HHMI s Origin of Species collection. This film describes how the more than 700 islands

More information

Adaptive radiation versus intraspeci c differentiation: morphological variation in Caribbean Anolis lizards

Adaptive radiation versus intraspeci c differentiation: morphological variation in Caribbean Anolis lizards Adaptive radiation versus intraspeci c differentiation: morphological variation in Caribbean Anolis lizards A. K. KNOX,* J. B. LOSOS* & C. J. SCHNEIDER *Department of Biology, Washington University, St

More information

Evolution of Biodiversity

Evolution of Biodiversity Long term patterns Evolution of Biodiversity Chapter 7 Changes in biodiversity caused by originations and extinctions of taxa over geologic time Analyses of diversity in the fossil record requires procedures

More information

LABORATORY EXERCISE: CLADISTICS III. In fact, cladistics is becoming increasingly applied in a wide range of fields. Here s a sampling:

LABORATORY EXERCISE: CLADISTICS III. In fact, cladistics is becoming increasingly applied in a wide range of fields. Here s a sampling: Biology 4415 Evolution LABORATORY EXERCISE: CLADISTICS III The last lab and the accompanying lectures should have given you an in-depth introduction to cladistics: what a cladogram means, how to draw one

More information

The Divergence of the Marine Iguana: Amblyrhyncus cristatus. from its earlier land ancestor (what is now the Land Iguana). While both the land and

The Divergence of the Marine Iguana: Amblyrhyncus cristatus. from its earlier land ancestor (what is now the Land Iguana). While both the land and Chris Lang Course Paper Sophomore College October 9, 2008 Abstract--- The Divergence of the Marine Iguana: Amblyrhyncus cristatus In this course paper, I address the divergence of the Galapagos Marine

More information

The Origin of Species: Lizards in an Evolutionary Tree

The Origin of Species: Lizards in an Evolutionary Tree The Origin of Species: Lizards in an Evolutionary Tree Cara Larracas, Stacy Lopez, Takara Yaegashi Period 4 Background Information Throughout the Caribbean Islands there is a species of anole lizards that

More information

Biodiversity and Extinction. Lecture 9

Biodiversity and Extinction. Lecture 9 Biodiversity and Extinction Lecture 9 This lecture will help you understand: The scope of Earth s biodiversity Levels and patterns of biodiversity Mass extinction vs background extinction Attributes of

More information

The Galapagos Islands: Crucible of Evolution.

The Galapagos Islands: Crucible of Evolution. The Galapagos Islands: Crucible of Evolution. I. The Archipelago. 1. Remote - About 600 miles west of SA. 2. Small (13 main; 6 smaller); arid. 3. Of recent volcanic origin (5-10 Mya): every height crowned

More information

CLADISTICS Student Packet SUMMARY Phylogeny Phylogenetic trees/cladograms

CLADISTICS Student Packet SUMMARY Phylogeny Phylogenetic trees/cladograms CLADISTICS Student Packet SUMMARY PHYLOGENETIC TREES AND CLADOGRAMS ARE MODELS OF EVOLUTIONARY HISTORY THAT CAN BE TESTED Phylogeny is the history of descent of organisms from their common ancestor. Phylogenetic

More information

Darwin s Finches: A Thirty Year Study.

Darwin s Finches: A Thirty Year Study. Darwin s Finches: A Thirty Year Study. I. Mit-DNA Based Phylogeny (Figure 1). 1. All Darwin s finches descended from South American grassquit (small finch) ancestor circa 3 Mya. 2. Galapagos colonized

More information

NAME: DATE: SECTION:

NAME: DATE: SECTION: NAME: DATE: SECTION: MCAS PREP PACKET EVOLUTION AND BIODIVERSITY 1. Which of the following observations best supports the conclusion that dolphins and sharks do not have a recent common ancestor? A. Dolphins

More information

Lecture 11 Wednesday, September 19, 2012

Lecture 11 Wednesday, September 19, 2012 Lecture 11 Wednesday, September 19, 2012 Phylogenetic tree (phylogeny) Darwin and classification: In the Origin, Darwin said that descent from a common ancestral species could explain why the Linnaean

More information

Chapter 16: Evolution Lizard Evolution Virtual Lab Honors Biology. Name: Block: Introduction

Chapter 16: Evolution Lizard Evolution Virtual Lab Honors Biology. Name: Block: Introduction Chapter 16: Evolution Lizard Evolution Virtual Lab Honors Biology Name: Block: Introduction Charles Darwin proposed that over many generations some members of a population could adapt to a changing environment

More information

Living Planet Report 2018

Living Planet Report 2018 Living Planet Report 2018 Technical Supplement: Living Planet Index Prepared by the Zoological Society of London Contents The Living Planet Index at a glance... 2 What is the Living Planet Index?... 2

More information

Introduction to phylogenetic trees and tree-thinking Copyright 2005, D. A. Baum (Free use for non-commercial educational pruposes)

Introduction to phylogenetic trees and tree-thinking Copyright 2005, D. A. Baum (Free use for non-commercial educational pruposes) Introduction to phylogenetic trees and tree-thinking Copyright 2005, D. A. Baum (Free use for non-commercial educational pruposes) Phylogenetics is the study of the relationships of organisms to each other.

More information

REPTILES OF JAMAICA. Peter Vogel Department of Life Sciences Mona Campus University of the West Indies

REPTILES OF JAMAICA. Peter Vogel Department of Life Sciences Mona Campus University of the West Indies REPTILES OF JAMAICA Peter Vogel Department of Life Sciences Mona Campus University of the West Indies Order Testudines: Turtles Jamaican Slider Turtle (freshwater) Marine Turtles Jamaican Slider Turtle

More information

USING DNA TO EXPLORE LIZARD PHYLOGENY

USING DNA TO EXPLORE LIZARD PHYLOGENY Species The MThe aking of the offittest: The Making of the Fittest: in anand Natural Selection Adaptation Tree Natural Selection and Adaptation USING DNA TO EXPLORE LIZARD PHYLOGENY OVERVIEW This lesson

More information

A Field Guide to the Herpetofauna on Dominica, W.I. by Brandi Quick Wildlife and Fisheries Science Texas A&M University.

A Field Guide to the Herpetofauna on Dominica, W.I. by Brandi Quick Wildlife and Fisheries Science Texas A&M University. A Field Guide to the Herpetofauna on Dominica, W.I. by Brandi Quick Wildlife and Fisheries Science Texas A&M University June 11, 2001 Study Abroad Dominica 2001 Dr. Thomas Lacher Dr. Bob Wharton ABSTRACT

More information

Colonisation, diversificationand extinctionof birds in Macaronesia

Colonisation, diversificationand extinctionof birds in Macaronesia Colonisation, diversificationand extinctionof birds in Macaronesia Juan Carlos Illera Research Unit of Biodiversity (UO-PA-CSIC) http://www.juancarlosillera.es / http://www.unioviedo.es/umib/ MACARONESIA

More information

Evolution. Evolution is change in organisms over time. Evolution does not have a goal; it is often shaped by natural selection (see below).

Evolution. Evolution is change in organisms over time. Evolution does not have a goal; it is often shaped by natural selection (see below). Evolution Evolution is change in organisms over time. Evolution does not have a goal; it is often shaped by natural selection (see below). Species an interbreeding population of organisms that can produce

More information

16.3 Adaptation and Speciation in Greater Antillean Anoles

16.3 Adaptation and Speciation in Greater Antillean Anoles 16 Evolutionary Diversification of Caribbean Anolis Lizards 335 To what extent does this interisland study of size offer evidence for the role of adaptation in speciation? In the north, the larger species

More information

EXPANDED SUBDIGITAL TOEPADS AS KEY INNOVATIONS 332 THE EVOLUTION OF AN ADAPTIVE RADIATION

EXPANDED SUBDIGITAL TOEPADS AS KEY INNOVATIONS 332 THE EVOLUTION OF AN ADAPTIVE RADIATION heterogeneity results because the trait actually has no causal relationship with the extent of diversification versus the alternative that it does in some cases, but not in others (Donoghue, 2005). With

More information

8/19/2013. What is convergence? Topic 11: Convergence. What is convergence? What is convergence? What is convergence? What is convergence?

8/19/2013. What is convergence? Topic 11: Convergence. What is convergence? What is convergence? What is convergence? What is convergence? Topic 11: Convergence What are the classic herp examples? Have they been formally studied? Emerald Tree Boas and Green Tree Pythons show a remarkable level of convergence Photos KP Bergmann, Philadelphia

More information

Biological Invasions and Herpetology. 4/18/13 Chris Thawley

Biological Invasions and Herpetology. 4/18/13 Chris Thawley Biological Invasions and Herpetology 4/18/13 Chris Thawley What are some invasive species? http://news.discovery.com/animals/videos/animals-jumping-carp-attack-explained.htm What is an Invasive species?

More information

Species: Panthera pardus Genus: Panthera Family: Felidae Order: Carnivora Class: Mammalia Phylum: Chordata

Species: Panthera pardus Genus: Panthera Family: Felidae Order: Carnivora Class: Mammalia Phylum: Chordata CHAPTER 6: PHYLOGENY AND THE TREE OF LIFE AP Biology 3 PHYLOGENY AND SYSTEMATICS Phylogeny - evolutionary history of a species or group of related species Systematics - analytical approach to understanding

More information

6. The lifetime Darwinian fitness of one organism is greater than that of another organism if: A. it lives longer than the other B. it is able to outc

6. The lifetime Darwinian fitness of one organism is greater than that of another organism if: A. it lives longer than the other B. it is able to outc 1. The money in the kingdom of Florin consists of bills with the value written on the front, and pictures of members of the royal family on the back. To test the hypothesis that all of the Florinese $5

More information

Types of Evolution: Punctuated Equilibrium vs Gradualism

Types of Evolution: Punctuated Equilibrium vs Gradualism Biology Types of Evolution: Punctuated Equilibrium vs Gradualism Use the information below AND YOUR NOTES to answer the questions that follow. READ the information before attempting to do the work. You

More information

Marine Reptiles. Four types of marine reptiles exist today: 1. Sea Turtles 2. Sea Snakes 3. Marine Iguana 4. Saltwater Crocodile

Marine Reptiles. Four types of marine reptiles exist today: 1. Sea Turtles 2. Sea Snakes 3. Marine Iguana 4. Saltwater Crocodile Marine Reptiles Four types of marine reptiles exist today: 1. Sea Turtles 2. Sea Snakes 3. Marine Iguana 4. Saltwater Crocodile Sea Turtles All species of sea turtles are threatened or endangered Endangered

More information

Biology of the Galapagos

Biology of the Galapagos Biology of the Galapagos Wikelski reading, Web links 26 March 2009, Thurs ECOL 182R UofA K. E. Bonine Alan Alda Video? 1 Student Chapter of the Tucson Herpetological Society COME JOIN!!!!! 2 General Information

More information

Biology. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall Biology 1 of 33 16-3 The Process of 16-3 The Process of Speciation Speciation 2 of 33 16-3 The Process of Speciation Natural selection and chance events can change the relative frequencies of alleles in

More information

Phylogeographic assessment of Acanthodactylus boskianus (Reptilia: Lacertidae) based on phylogenetic analysis of mitochondrial DNA.

Phylogeographic assessment of Acanthodactylus boskianus (Reptilia: Lacertidae) based on phylogenetic analysis of mitochondrial DNA. Zoology Department Phylogeographic assessment of Acanthodactylus boskianus (Reptilia: Lacertidae) based on phylogenetic analysis of mitochondrial DNA By HAGAR IBRAHIM HOSNI BAYOUMI A thesis submitted in

More information

COULD YOU HAVE RIDDEN A HORSE MILLIONS OF YEARS AGO? Horse evolution goes back more than 55 million years

COULD YOU HAVE RIDDEN A HORSE MILLIONS OF YEARS AGO? Horse evolution goes back more than 55 million years NATURAL SELECTION 7. 1 1 C I D E N T I F Y S O M E C H A N G E S I N T R A I T S T H A T H A V E O C C U R R E D O V E R S E V E R A L G E N E R A T I O N S T H R O U G H N A T U R A L S E L E C T I O

More information

08 alberts part2 7/23/03 9:10 AM Page 95 PART TWO. Behavior and Ecology

08 alberts part2 7/23/03 9:10 AM Page 95 PART TWO. Behavior and Ecology 08 alberts part2 7/23/03 9:10 AM Page 95 PART TWO Behavior and Ecology 08 alberts part2 7/23/03 9:10 AM Page 96 08 alberts part2 7/23/03 9:10 AM Page 97 Introduction Emília P. Martins Iguanas have long

More information

Modern Evolutionary Classification. Lesson Overview. Lesson Overview Modern Evolutionary Classification

Modern Evolutionary Classification. Lesson Overview. Lesson Overview Modern Evolutionary Classification Lesson Overview 18.2 Modern Evolutionary Classification THINK ABOUT IT Darwin s ideas about a tree of life suggested a new way to classify organisms not just based on similarities and differences, but

More information

A Comparison of morphological differences between Gymnophthalmus spp. in Dominica, West Indies

A Comparison of morphological differences between Gymnophthalmus spp. in Dominica, West Indies 209 A Comparison of morphological differences between Gymnophthalmus spp. in Dominica, West Indies Marie Perez June 2015 Texas A&M University Dr. Thomas Lacher and Dr. Jim Woolley Department of Wildlife

More information

Temporal mitochondrial DNA variation in honeybee populations from Tenerife (Canary Islands, Spain)

Temporal mitochondrial DNA variation in honeybee populations from Tenerife (Canary Islands, Spain) Temporal mitochondrial DNA variation in honeybee populations from Tenerife (Canary Islands, Spain) Mª Jesús Madrid-Jiménez, Irene Muñoz, Pilar De la Rúa Dpto. de Zoología y Antropología Física, Facultad

More information

Darwin s Finches and Natural Selection

Darwin s Finches and Natural Selection Darwin s Finches and Natural Selection by Cheryl Heinz, Dept. of Biological Sciences, Benedictine University, and Eric Ribbens, Dept. of Biological Sciences, Western Illinois University 1 The Galapagos

More information

16.4 Concluding Comments

16.4 Concluding Comments 16 Evolutionary Diversification of Caribbean Anolis Lizards 343 However, an alternative hypothesis is that limb length is a phenotypically plastic trait. Perhaps young A. sagrei that grow up using narrower

More information

Wall lizards of the. Pityuses archipelago. Text and photography by: Nathan Dappen. As summer approaches, the Mediterranean islands

Wall lizards of the. Pityuses archipelago. Text and photography by: Nathan Dappen. As summer approaches, the Mediterranean islands Sargantanas Pityuses Wall lizards of the Text and photography by: Nathan Dappen As summer approaches, the Mediterranean islands of Ibiza and Formentera begin to wake up Pityuses archipelago from their

More information

2016 CHARLES DARWIN ORATION. Evolution in action - Charles Darwin and the Galápagos Finches

2016 CHARLES DARWIN ORATION. Evolution in action - Charles Darwin and the Galápagos Finches 2016 CHARLES DARWIN ORATION Evolution in action - Charles Darwin and the Galápagos Finches Emeritus Professor Peter Grant Charles Darwin s life and legacy are well known. You get the impression that not

More information

Reptile conservation in Mauritius

Reptile conservation in Mauritius Reptile conservation in Mauritius Pristine Mauritius Nik Cole 671 species of plant 46% endemic to Mauritius The forests supported 22 types of land bird, 12 endemic to Mauritius, such as the dodo The Mauritius

More information

Differences between Reptiles and Mammals. Reptiles. Mammals. No milk. Milk. Small brain case Jaw contains more than one bone Simple teeth

Differences between Reptiles and Mammals. Reptiles. Mammals. No milk. Milk. Small brain case Jaw contains more than one bone Simple teeth Differences between Reptiles and Mammals Reptiles No milk Mammals Milk The Advantage of Being a Furball: Diversification of Mammals Small brain case Jaw contains more than one bone Simple teeth One ear

More information

Lab VII. Tuatara, Lizards, and Amphisbaenids

Lab VII. Tuatara, Lizards, and Amphisbaenids Lab VII Tuatara, Lizards, and Amphisbaenids Project Reminder Don t forget about your project! Written Proposals due and Presentations are given on 4/21!! Abby and Sarah will read over your written proposal

More information

Teacher Workbooks. Language Arts Series Internet Reading Comprehension Oceans Theme, Vol. 1

Teacher Workbooks. Language Arts Series Internet Reading Comprehension Oceans Theme, Vol. 1 Teacher Workbooks Language Arts Series Internet Reading Comprehension Oceans Theme, Vol. 1 Copyright 2003 Teachnology Publishing Company A Division of Teachnology, Inc. For additional information, visit

More information

LABORATORY #10 -- BIOL 111 Taxonomy, Phylogeny & Diversity

LABORATORY #10 -- BIOL 111 Taxonomy, Phylogeny & Diversity LABORATORY #10 -- BIOL 111 Taxonomy, Phylogeny & Diversity Scientific Names ( Taxonomy ) Most organisms have familiar names, such as the red maple or the brown-headed cowbird. However, these familiar names

More information

Evolution. Geology. Objectives. Key Terms SECTION 2

Evolution. Geology. Objectives. Key Terms SECTION 2 SECTION 2 Evolution Organisms tend to be well suited to where they live and what they do. Figure 7 shows a chameleon (kuh MEEL ee uhn) capturing an insect. Insects are not easy to catch, so how does the

More information

Natural Selection. What is natural selection?

Natural Selection. What is natural selection? Natural Selection Natural Selection What is natural selection? In 1858, Darwin and Alfred Russell proposed the same explanation for how evolution occurs In his book, Origin of the Species, Darwin proposed

More information

EXOTICS EXHIBIT MORE EVOLUTIONARY HISTORY THAN NATIVES : A COMPARISON OF THE ECOLOGY AND EVOLUTION OF EXOTIC AND NATIVE ANOLE LIZARDS

EXOTICS EXHIBIT MORE EVOLUTIONARY HISTORY THAN NATIVES : A COMPARISON OF THE ECOLOGY AND EVOLUTION OF EXOTIC AND NATIVE ANOLE LIZARDS Chapter 7 EXOTICS EXHIBIT MORE EVOLUTIONARY HISTORY THAN NATIVES : A COMPARISON OF THE ECOLOGY AND EVOLUTION OF EXOTIC AND NATIVE ANOLE LIZARDS Matthew R. Helmus,* Jocelyn E. Behm,* Wendy A.M. Jesse,*

More information

Biology of the Galapagos

Biology of the Galapagos Biology of the Galapagos Why can you get so close to the wildlife in the Galapagos? 23 March 2010, Thurs ECOL 182R UofA K. E. Bonine Alan Alda Video? 1 9 Galapagos 1000 km Ecuador S. America Origins of

More information

Is it better to be bigger? Featured scientists: Aaron Reedy and Robert Cox from the University of Virginia Co-written by Matt Kustra

Is it better to be bigger? Featured scientists: Aaron Reedy and Robert Cox from the University of Virginia Co-written by Matt Kustra Is it better to be bigger? Featured scientists: Aaron Reedy and Robert Cox from the University of Virginia Co-written by Matt Kustra Research Background: When Charles Darwin talked about the struggle for

More information

THE EFFECTS OF MORPHOLOGY AND PERCH DIAMETER ON SPRINT PERFORMANCE OF ANOLIS LIZARDS

THE EFFECTS OF MORPHOLOGY AND PERCH DIAMETER ON SPRINT PERFORMANCE OF ANOLIS LIZARDS J. exp. Biol. 145, 23-30 (1989) 23 Printed in Great Britain The Company of Biologists Limited 1989 THE EFFECTS OF MORPHOLOGY AND PERCH DIAMETER ON SPRINT PERFORMANCE OF ANOLIS LIZARDS BY JONATHAN B. LOSOS

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/314/5802/1111/dc1 Supporting Online Material for Rapid Temporal Reversal in Predator-Driven Natural Selection Jonathan B. Losos,* Thomas W. Schoener, R. Brian Langerhans,

More information

Morphological Variation in Anolis oculatus Between Dominican. Habitats

Morphological Variation in Anolis oculatus Between Dominican. Habitats Morphological Variation in Anolis oculatus Between Dominican Habitats Lori Valentine Texas A&M University Dr. Lacher Dr. Woolley Study Abroad Dominica 2002 Morphological Variation in Anolis oculatus Between

More information

Quiz Flip side of tree creation: EXTINCTION. Knock-on effects (Crooks & Soule, '99)

Quiz Flip side of tree creation: EXTINCTION. Knock-on effects (Crooks & Soule, '99) Flip side of tree creation: EXTINCTION Quiz 2 1141 1. The Jukes-Cantor model is below. What does the term µt represent? 2. How many ways can you root an unrooted tree with 5 edges? Include a drawing. 3.

More information

PUBLICATIONS (PEER REVIEWED)

PUBLICATIONS (PEER REVIEWED) Matthew E. Gifford EDUCATION Present Washington University, Department of Biology Campus Box 1137, St. Louis, Missouri 63130 Office: (314)935 5302, Cell: (314)550 0485, Email: gifford@biology2.wustl.edu

More information

1 Describe the anatomy and function of the turtle shell. 2 Describe respiration in turtles. How does the shell affect respiration?

1 Describe the anatomy and function of the turtle shell. 2 Describe respiration in turtles. How does the shell affect respiration? GVZ 2017 Practice Questions Set 1 Test 3 1 Describe the anatomy and function of the turtle shell. 2 Describe respiration in turtles. How does the shell affect respiration? 3 According to the most recent

More information

Evolution by Natural Selection

Evolution by Natural Selection Evolution by Natural Selection 2006-2007 DOCTRINE TINTORETTO The Creation of the Animals 1550 But the Fossil record OBSERVATION Anaerobic Bacteria Photosynthetic Bacteria Dinosaurs Green Algae Multicellular

More information

Evolution of Birds. Summary:

Evolution of Birds. Summary: Oregon State Standards OR Science 7.1, 7.2, 7.3, 7.3S.1, 7.3S.2 8.1, 8.2, 8.2L.1, 8.3, 8.3S.1, 8.3S.2 H.1, H.2, H.2L.4, H.2L.5, H.3, H.3S.1, H.3S.2, H.3S.3 Summary: Students create phylogenetic trees to

More information

B D. C D) Devonian E F. A) Cambrian. B) Ordovician. C) Silurian. E) Carboniferous. F) Permian. Paleozoic Era

B D. C D) Devonian E F. A) Cambrian. B) Ordovician. C) Silurian. E) Carboniferous. F) Permian. Paleozoic Era Paleozoic Era A) Cambrian A B) Ordovician B D C) Silurian C D) Devonian E) Carboniferous F) Permian E F The Cambrian explosion refers to the sudden appearance of many species of animals in the fossil record.

More information

Class Reptilia Testudines Squamata Crocodilia Sphenodontia

Class Reptilia Testudines Squamata Crocodilia Sphenodontia Class Reptilia Testudines (around 300 species Tortoises and Turtles) Squamata (around 7,900 species Snakes, Lizards and amphisbaenids) Crocodilia (around 23 species Alligators, Crocodiles, Caimans and

More information

Charles Darwin. The Theory of Evolution

Charles Darwin. The Theory of Evolution The Theory of Evolution Darwin Notes Pt. 2 Charles Darwin Darwin was born in 1809 in England. He was from a strong Christian family. Age 16, Darwin was sent by his father to study medicine He left and

More information

The Theory of Evolution

The Theory of Evolution The Theory of Evolution Darwin Notes Pt. 2 Charles Darwin Darwin was born in 1809 in England. He was from a strong Christian family. Age 16, Darwin was sent by his father to study medicine He left and

More information

Bio 1B Lecture Outline (please print and bring along) Fall, 2006

Bio 1B Lecture Outline (please print and bring along) Fall, 2006 Bio 1B Lecture Outline (please print and bring along) Fall, 2006 B.D. Mishler, Dept. of Integrative Biology 2-6810, bmishler@berkeley.edu Evolution lecture #4 -- Phylogenetic Analysis (Cladistics) -- Oct.

More information

Pikas. Pikas, who live in rocky mountaintops, are not known to move across non-rocky areas or to

Pikas. Pikas, who live in rocky mountaintops, are not known to move across non-rocky areas or to Pikas, who live in rocky mountaintops, are not known to move across non-rocky areas or to A pika. move long distances. Many of the rocky areas where they live are not close to other rocky areas. This means

More information

Unit 7: Adaptation STUDY GUIDE Name: SCORE:

Unit 7: Adaptation STUDY GUIDE Name: SCORE: Unit 7: Adaptation STUDY GUIDE Name: SCORE: 1. Which is an adaptation that makes it possible for the animal to survive in a cold climate? A. tail on a lizard B. scales on a fish C. stripes on a tiger D.

More information

Iguana Technical Assistance Workshop. Presented by: Florida Fish and Wildlife Conservation Commission

Iguana Technical Assistance Workshop. Presented by: Florida Fish and Wildlife Conservation Commission Iguana Technical Assistance Workshop Presented by: Florida Fish and Wildlife Conservation Commission 1 Florida Fish and Wildlife Conservation Commission Protects and manages 575 species of wildlife 700

More information

Agenda. Warm-up: Look in your notebook for your grades. Review Notes on Genetic Variation Rat Island. Retake: Monday- last day!!!

Agenda. Warm-up: Look in your notebook for your grades. Review Notes on Genetic Variation Rat Island. Retake: Monday- last day!!! Agenda Warm-up: Look in your notebook for your grades Were you missing any of the assignments? Review Notes on Genetic Variation Rat Island Retake: Monday- last day!!! Gene Pools 1.What makes a species?

More information

Macroevolution Part II: Allopatric Speciation

Macroevolution Part II: Allopatric Speciation Macroevolution Part II: Allopatric Speciation Looks Can Be Deceiving! These meadowlarks look very similar yet they are not the same species. By contrast, these brittle stars look very different from one

More information

Animal Behavior and Evolution

Animal Behavior and Evolution nimal ehavior and Evolution Name: ate: 1. Western coral snakes have a striped color pattern and are poisonous. rizona mountain kingsnakes look like western coral snakes but are not poisonous. The color

More information

INQUIRY & INVESTIGATION

INQUIRY & INVESTIGATION INQUIRY & INVESTIGTION Phylogenies & Tree-Thinking D VID. UM SUSN OFFNER character a trait or feature that varies among a set of taxa (e.g., hair color) character-state a variant of a character that occurs

More information

AP Biology. AP Biology

AP Biology. AP Biology Evolution by Natural Selection 2006-2007 DOCTRINE TINTORETTO The Creation of the Animals 1550 But the Fossil record OBSERVATION mya Quaternary 1.5 Tertiary 63 Cretaceous 135 Jurassic 180 Triassic 225 Permian

More information

NOTES ON THE ECOLOGY AND NATURAL HISTORY OF TWO SPECIES OF EGERNIA (SCINCIDAE) IN WESTERN AUSTRALIA

NOTES ON THE ECOLOGY AND NATURAL HISTORY OF TWO SPECIES OF EGERNIA (SCINCIDAE) IN WESTERN AUSTRALIA NOTES ON THE ECOLOGY AND NATURAL HISTORY OF TWO SPECIES OF EGERNIA (SCINCIDAE) IN WESTERN AUSTRALIA By ERIC R. PIANKA Integrative Biology University of Texas at Austin Austin, Texas 78712 USA Email: erp@austin.utexas.edu

More information

Biology. Slide 1of 50. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1of 50. End Show. Copyright Pearson Prentice Hall Biology 1of 50 2of 50 Phylogeny of Chordates Nonvertebrate chordates Jawless fishes Sharks & their relatives Bony fishes Reptiles Amphibians Birds Mammals Invertebrate ancestor 3of 50 A vertebrate dry,

More information

When a species can t stand the heat

When a species can t stand the heat When a species can t stand the heat Featured scientists: Kristine Grayson from University of Richmond, Nicola Mitchell from University of Western Australia, & Nicola Nelson from Victoria University of

More information

Chapter 22 Darwin and Evolution by Natural Selection

Chapter 22 Darwin and Evolution by Natural Selection Anaerobic Bacteria Photosynthetic Bacteria Dinosaurs Green Algae Multicellular Animals Flowering Molluscs Arthropods Chordates Jawless Fish Teleost Fish Amphibians Insects Reptiles Mammals Birds Land Plants

More information

Unit 19.3: Amphibians

Unit 19.3: Amphibians Unit 19.3: Amphibians Lesson Objectives Describe structure and function in amphibians. Outline the reproduction and development of amphibians. Identify the three living amphibian orders. Describe how amphibians

More information

Stuart S. Sumida Biology 342. Simplified Phylogeny of Squamate Reptiles

Stuart S. Sumida Biology 342. Simplified Phylogeny of Squamate Reptiles Stuart S. Sumida Biology 342 Simplified Phylogeny of Squamate Reptiles Amphibia Amniota Seymouriamorpha Diadectomorpha Synapsida Parareptilia Captorhinidae Diapsida Archosauromorpha Reptilia Amniota Amphibia

More information

CURRICULUM VITAE SIMON SCARPETTA (July 2018)

CURRICULUM VITAE SIMON SCARPETTA (July 2018) CURRICULUM VITAE SIMON SCARPETTA (July 2018) PhD Candidate in Paleontology Jackson School of Geosciences Email: scas100@utexas.edu RESEARCH AREAS AND INTERESTS Evolutionary biology, herpetology, paleontology,

More information

Do the traits of organisms provide evidence for evolution?

Do the traits of organisms provide evidence for evolution? PhyloStrat Tutorial Do the traits of organisms provide evidence for evolution? Consider two hypotheses about where Earth s organisms came from. The first hypothesis is from John Ray, an influential British

More information

Evolution by Natural Selection

Evolution by Natural Selection Evolution by Natural Selection 225 Permian Seed Plants Flowering Plants Birds Land Plants Mammals Insects Reptiles Teleost Fish Amphibians Chordates Molluscs Arthropods Dinosaurs 180 Triassic Jawless Fish

More information

Evolution as Fact. The figure below shows transitional fossils in the whale lineage.

Evolution as Fact. The figure below shows transitional fossils in the whale lineage. Evolution as Fact Evolution is a fact. Organisms descend from others with modification. Phylogeny, the lineage of ancestors and descendants, is the scientific term to Darwin's phrase "descent with modification."

More information

A comparison of evolutionary radiations in Mainland and West Indian Anolis lizards. Ecology

A comparison of evolutionary radiations in Mainland and West Indian Anolis lizards. Ecology University of Massachusetts Amherst From the SelectedWorks of Duncan J. Irschick 1997 A comparison of evolutionary radiations in Mainland and West Indian Anolis lizards. Ecology Duncan J. Irschick, University

More information

Title: Phylogenetic Methods and Vertebrate Phylogeny

Title: Phylogenetic Methods and Vertebrate Phylogeny Title: Phylogenetic Methods and Vertebrate Phylogeny Central Question: How can evolutionary relationships be determined objectively? Sub-questions: 1. What affect does the selection of the outgroup have

More information

Disappearing Marine Iguanas: A Case of Population Collapse

Disappearing Marine Iguanas: A Case of Population Collapse WLHS/Marine Biology/Oppelt Name Disappearing Marine Iguanas: A Case of Population Collapse Directions: Read the following scenarios and answer the corresponding questions Part 1: Disappearing Marine Iguanas

More information

Lonesome George: RIP. Galápagos tortoises

Lonesome George: RIP. Galápagos tortoises Lonesome George: RIP On 24th June 2012, an animal that had been described as the rarest animal on Earth passed away. The animal had been resident at the Charles Darwin Research Centre (CDRC) on the island

More information

May 10, SWBAT analyze and evaluate the scientific evidence provided by the fossil record.

May 10, SWBAT analyze and evaluate the scientific evidence provided by the fossil record. May 10, 2017 Aims: SWBAT analyze and evaluate the scientific evidence provided by the fossil record. Agenda 1. Do Now 2. Class Notes 3. Guided Practice 4. Independent Practice 5. Practicing our AIMS: E.3-Examining

More information

Life s Natural History = a record of Successions & Extinctions. Anaerobic Bacteria. Photosynthetic Bacteria. Green Algae. Multicellular Animals

Life s Natural History = a record of Successions & Extinctions. Anaerobic Bacteria. Photosynthetic Bacteria. Green Algae. Multicellular Animals Evolution by Natural Selection (Chapter 22) DOCTRINE TINTORETTO The Creation of the Animals 1550 The Fossil record OBSERVATION mya Quaternary 1.5 Tertiary 63 Cretaceous 135 Jurassic 180 Triassic 225 Permian

More information

LOOK WHO S COMING FOR DINNER: SELECTION BY PREDATION

LOOK WHO S COMING FOR DINNER: SELECTION BY PREDATION LOOK WHO S COMING FOR DINNER: SELECTION BY PREDATION OVERVIEW This activity serves as a supplement to the film The Origin of Species: Lizards in an Evolutionary Tree. It is based on a year-long predation

More information

Extinction. Extinction occurs when all individuals of a species are gone and have left no descendants. If all the species within a genus are

Extinction. Extinction occurs when all individuals of a species are gone and have left no descendants. If all the species within a genus are Extinction Extinction occurs when all individuals of a species are gone and have left no descendants. If all the species within a genus are extinct then the genus is extinct. If all genera in a family

More information

Release of Arnold s giant tortoises Dipsochelys arnoldi on Silhouette island, Seychelles

Release of Arnold s giant tortoises Dipsochelys arnoldi on Silhouette island, Seychelles Release of Arnold s giant tortoises Dipsochelys arnoldi on Silhouette island, Seychelles Justin Gerlach Nature Protection Trust of Seychelles jstgerlach@aol.com Summary On 7 th December 2007 five adult

More information

Today is Tuesday, September 25 th, 2018

Today is Tuesday, September 25 th, 2018 Today is Tuesday, September 25 th, 2018 Pre-Class: Today we are reviewing. Have your questions ready! Today s Agenda Review Review Trains? Review Review Game Rules I will ask a question to the class. Each

More information

Anole Density and Biomass in Dominica. TAMU Study Abroad Dr. Woolley, Dr. Lacher Will Morrison Lori Valentine Michael Kerehgyarto Adam Burklund

Anole Density and Biomass in Dominica. TAMU Study Abroad Dr. Woolley, Dr. Lacher Will Morrison Lori Valentine Michael Kerehgyarto Adam Burklund Anole Density and Biomass in Dominica TAMU Study Abroad Dr. Woolley, Dr. Lacher Will Morrison Lori Valentine Michael Kerehgyarto Adam Burklund 1 Anole Density and Biomass in Dominica Abstract The genus

More information

PARTIAL REPORT. Juvenile hybrid turtles along the Brazilian coast RIO GRANDE FEDERAL UNIVERSITY

PARTIAL REPORT. Juvenile hybrid turtles along the Brazilian coast RIO GRANDE FEDERAL UNIVERSITY RIO GRANDE FEDERAL UNIVERSITY OCEANOGRAPHY INSTITUTE MARINE MOLECULAR ECOLOGY LABORATORY PARTIAL REPORT Juvenile hybrid turtles along the Brazilian coast PROJECT LEADER: MAIRA PROIETTI PROFESSOR, OCEANOGRAPHY

More information

d. Wrist bones. Pacific salmon life cycle. Atlantic salmon (different genus) can spawn more than once.

d. Wrist bones. Pacific salmon life cycle. Atlantic salmon (different genus) can spawn more than once. Lecture III.5b Answers to HW 1. (2 pts). Tiktaalik bridges the gap between fish and tetrapods by virtue of possessing which of the following? a. Humerus. b. Radius. c. Ulna. d. Wrist bones. 2. (2 pts)

More information