Report. Darkness Alters Maturation of Visual Cortex and Promotes Fast Recovery from Monocular Deprivation

Size: px
Start display at page:

Download "Report. Darkness Alters Maturation of Visual Cortex and Promotes Fast Recovery from Monocular Deprivation"

Transcription

1 Current Biology 23, , March 4, 2013 ª2013 Elsevier Ltd All rights reserved Darkness Alters Maturation of Visual Cortex and Promotes Fast Recovery from Monocular Deprivation Report Kevin R. Duffy 1, * and Donald E. Mitchell 1 1 Department of Psychology and Neuroscience, Dalhousie University, 1459 Oxford Street, Halifax, NS B3H 4R2, Canada Summary The existence of heightened brain plasticity during critical periods in early postnatal life is a central tenet of developmental sensory neuroscience and helps explain the enduring deficits induced by early abnormal sensory exposure [1, 2]. The human visual disorder amblyopia has been linked to unbalanced visual input to the two eyes in early postnatal visual cortical development and has been modeled in animals by depriving them of patterned visual input to one eye [3, 4], a procedure known as monocular deprivation (MD). We investigated the possibility that a period of darkness might reset the central visual pathways to a more plastic stage and hence increase the capacity for recovery from early MD. Here we show that a 10 day period of complete darkness reverses maturation of stable cytoskeleton components in kitten visual cortex and also results in rapid elimination of, or even immunity from, visual deficits linked to amblyogenic rearing by MD. The heightened instability of the cytoskeleton induced by darkness likely represents just one of many parallel molecular changes that promote visual recovery, possibly by release of the various brakes on cortical plasticity [2]. Results and Discussion The changing vulnerability with age of the visual cortex to monocular deprivation (MD) stands as the quintessential demonstration of a critical period in visual system development [1, 4]. In kittens, MD as short as a few days induces functional and/or structural changes in the dorsal lateral geniculate nucleus [3, 5] and visual cortex [4, 6] as well as severe impairments of vision when using the deprived eye [7, 8]. The effects of MD on the visual cortex are particularly robust, leading to functional shifts in the relative weighting of the two eyes among cortical cells [1, 4] and to changes in the amount of cortex dominated by each eye [6]. The susceptibility of kitten visual cortex to MD peaks at between 4 and 5 weeks of age [9] and is followed by a gradual decline to negligible levels at between 8 and 10 months [10, 11]. Modeling of the molecular events that underlie critical period plasticity [1, 12] suggests an alteration to excitatory-inhibitory (E-I) balance coincident with the emergence of specific inhibitory circuits that interact with preestablished excitatory connections. Changes that occur downstream of the plasticity engendered by the reset E-I balance result in consolidation of plasticity at low (adult) levels. A number of molecules with late emerging developmental profiles have been proposed as brakes that gradually reduce plasticity to negligible levels. *Correspondence: kevin.duffy@dal.ca Biochemical [12, 13] or experiential interventions [14] directed toward alteration of the E-I balance or manipulation of brakes on plasticity have been proposed as ways to rescue in adulthood functions lost from visual deprivation. Studies from kittens suggest that complete darkness imposed immediately after MD may lessen its effects. The effects on cortical ocular dominance of short periods of MD were attenuated by darkness [15] and, in the thalamus, prompt restoration of appropriate visual input after MD was mimicked by an equivalent period spent in darkness [16]. The learning rule of synaptic modification referred to as the BCM theory [17], predicts that recovery after MD would be optimized by a period of darkness interpolated prior to introduction of well-correlated visual input to both eyes [18 20]. To investigate whether a period of darkness might reset the visual cortex to a more structurally plastic state, we examined levels of neurofilament protein, on the basis of their link to stabilization of neuron structure [21] and their link to MD-mediated structural plasticity [22 25]. Neurofilament Levels Increase from Birth to Adulthood We first examined the developmental profile of the obligatory neurofilament light (NF-L) subunit to assess whether it contributes to an intracellular braking system to limit plasticity. Levels of NF-L in primary visual cortex (V1) were barely detectable at postnatal day (P) 0 and P24 (Figure 1A), though heavily contrasted images did reveal extremely faint bands at both time points (Figure 1B). NF-L increased only modestly to P35, and at P90 levels remained lower than in adults. Quantification of total protein fluorescence revealed little variability across ages shown in Figure 1A, whereas NF-L levels in the same lanes increased considerably (Figure 1C). Quantification of NF-L normalized to the total protein control revealed that, relative to adult, NF-L levels were stable and low until P40, after which levels rose to 60% of adult values by P90 (Figure 1D). The gradual rise in NF-L suggests a progressive increase in the stabilization of the cytoskeleton and is congruent with the notion that neurofilament acts in conjunction with other putative braking molecules [22] to constrain plasticity in adulthood. Neurofilament Protein Is Reduced by Darkness The effect of dark rearing on neurofilament protein was examined by labeling sections of V1 for NF-L (Figure 2A) in animals that were raised with normal vision until P30, at which time they were placed in darkness for either 5, 10, or 15 days. Following 10 and 15 days of darkness (Figure 2B), there was a significant reduction in NF-L immunopositive neurons within V1 to about 50% of normal; however, no change was observed in animals dark reared for 5 days. The effects of darkness appeared greatest in the superficial layers and in layer VI but were less apparent in layer V where there were still many immunopositive pyramidal cells (Figure 2A). Immunoblots of homogenized V1 also showed a decrease in NF-L to almost half of normal levels after 10 or 15 days of darkness (Figure 2C, red bands). Quantification of NF-L relative to a cytoskeletal loading control protein, a-tubulin (Figure 2C, green bands), confirmed a significant reduction of NF-L after dark rearing (Figure 2D).

2 Darkness Promotes Fast Recovery from Amblyopia 383 Figure 1. Neurofilament Levels in the Visual Cortex Increase 100-Fold from Birth to Adulthood (A) Multiplexed immunoblots of homogenate from right and left V1 at birth (P0) and across postnatal development to adulthood. Labeling for NF-L (red bands) was examined relative to a total protein stain (green bands) for each age and for each hemisphere separately. The total protein control was used to overcome the difficulty in identifying a single control protein present in the same amount from birth through to adulthood. (B) High-contrast images of NF-L bands taken from the two youngest ages shown in (A). (C) Measurement of NF-L band volume (red squares) and total protein band volume (green circles) from left and right visual cortex of the animals shown in (A), plotted for each marker as a percentage of the adult volume from the same hemisphere. Protein controls indicated that low NF-L levels early in development were not due to reduced loading of protein. (D) Quantification of NF-L in the left (triangles) and right (asterisks) hemispheres of V1, calculated as a percentage of total protein measured from the same lane and then normalized to the highest adult NF-L level from the same hemisphere. Profound Recovery of Vision Promoted by Brief Periods of Darkness Behavioral studies were conducted on animals following MD for 1 week, beginning at the peak of the critical period (P30). A 10 day period of darkness was imposed immediately after Figure 2. Dark Rearing for 10 or 15 Days Reduces Neurofilament Levels in the Visual Cortex (A) Immunolabeling for NF-L in tissue from V1 of a normal P40 control animal and from animals kept in complete darkness for 5, 10, and 15 days starting at P30. Layers of the visual cortex are indicated with roman numerals; scale bar represents 100 microns. (B) Stereological estimates of the density of neurons immunopositive for NF-L in the left and right hemispheres of V1 for normal and dark-reared groups. A Kruskal-Wallis nonparametric ANOVA of this data was significant (H[2] = 8.83, p = 0.012), and post hoc tests revealed a reduction from normal after 10 and 15 days of dark rearing (data combined; Dunn s multiple comparison test: p < 0.05) but no reduction from normal after 5 days (Dunn s multiple comparison test: p > 0.05). (C) Multiplexed immunoblots of homogenate from the left and right visual cortex of a control animal and of animals placed in complete darkness for 10 or 15 days. Levels of NF-L (red bands) and a cytoskeletal control protein, a-tubulin (green bands), within the same immunoblots are shown. (D) Quantification of the level of NF-L protein in V1 calculated separately for both hemispheres of each animal, measured as a proportion of the level of a-tubulin and plotted as a percentage of normal. Statistical comparison of NF-L levels between normal animals and those that were dark reared (10 and 15 day data combined) revealed a significant reduction after dark rearing (Mann-Whitney test: U = 1, p = 0.008). termination of the period of MD for three animals (immediate darkness [ID] kittens) but was delayed either 5 or 8 weeks for a second group (delayed darkness [DD] kittens; n = 4). Immediately after animals in the ID group were removed from the dark (Figure 3), they appeared blind in both eyes. The detrimental effect of darkness on the nondeprived eye predicts the previously unexpected result that a normal light reared kitten would emerge blind after a 10 day period of darkness

3 Current Biology Vol 23 No Figure 3. Ten Days of Darkness Imposed Immediately after 1 Week of MD Prevented Development of Amblyopia (A) A schematic illustration of the visual experience of the three immediate darkness (ID) kittens as a function of postnatal age in days (PD). (B) Changes in the visual acuity of the two eyes of one kitten (C153) following termination of 1 week of MD. Open and filled circles depict the acuity of, respectively, the initially deprived eye or nondeprived eye. Filled squares show the acuity measured with both eyes open. Animals initially appeared blind after dark rearing for 10 days. The poor vision of the nondeprived eye is highlighted by comparison with the acuity of the nondeprived eye in the DD animals (horizontal arrow), as measured at the same time point. Once the ability to detect the open door was achieved (OD), kittens were shortly thereafter able to discriminate a vertical from a horizontal grating, thereby allowing measurement of their visual acuity. (C) Comparable data from two other kittens. The vision of the deprived eye of C156 was assessed and shown to be blind (open circle symbol at time zero) shortly after the eyelids of this eye were reopened and immediately before it was placed in the darkroom. The brackets to the right of the data for C153, in (B), and C156 illustrate the range of values for the acuity of a normal kitten at 3 to 4 months of age, as tested on the same discrimination task employed here. initiated at P37, a result since confirmed (see Figure S1 available online). In prior studies [1, 26, 27], darkness was imposed near birth and lasted for months, so that the profound immediate effect of only 10 days of darkness starting at P37 was unexpected. Vision of the two eyes improved slowly in lockstep from blindness to normal grating acuity over a 7 week period. The crucial result was that amblyopia never developed. For the DD group (Figure 4A), the period of darkness was Figure 4. Extremely Rapid Recovery from Amblyopia after 10 Days of Darkness Imposed Either 5 or 8 Weeks after 1 Week of MD (A) A schematic illustration of the visual experience of the delayed darkness (DD) kittens as a function of postnatal age in days (PD). (B) Changes in the visual acuity of the two eyes of one kitten following termination of 1 week of MD before and after a 10 day period of darkness. Symbols are as in Figure 3. (C) Data for three other animals, for which data are not shown for the first 20 days after termination of the period of MD, so as to emphasize the rapid changes in the vision of the deprived eye upon removal of the kittens from the darkroom. The brackets to the right of the data for C157, in (B), and C155 illustrate the range of values for the acuity of a normal kitten at 3 to 4 months of age, as tested on the same discrimination task as employed here. delayed for 5 to 8 weeks after the period of MD, at which time substantial and stable amblyopia had developed in the deprived eye that was slightly worse than previously reported values from kittens tested by the same methods after similar periods of deprivation that began 5 days later [28 30]. Results of longitudinal measurements of the acuities of the two eyes are shown for one animal (C157) in Figure 4B. In contrast to the ID group, darkness had no immediate deleterious effect on the vision of the nondeprived eye, indicating that the critical period for the effects of darkness on vision (Figure 3) is short. The acuity of the deprived eye improved rapidly after the period of darkness to attain values equal to that of the fellow eye in just 5 to 7 days, a result confirmed by the other three animals (Figure 4C). Because the acuity of the nondeprived eye of C155 (placed in darkness at P71) was unimpaired by

4 Darkness Promotes Fast Recovery from Amblyopia 385 darkness, it would appear that the critical period for the effects of darkness on acuity ends by 10 weeks of age. The swiftness and the entirety of the recovery of the deprived eye in the DD group were startling because darkness was imposed at 3 months, when changes of the vision of the deprived eye following conventional manipulations are slow and limited [8]. The recovery after darkness is also impressive when compared with conventional recovery protocols; even when MD is terminated early (at 4 to 6 weeks of age), recovery of acuity in the deprived eye continues for 3 to 4 weeks during either reverse occlusion [31] or binocular recovery, where initial changes are fastest [29]. Only with reverse occlusion can the acuity of the deprived eye sometimes reach normal levels, which comes at the cost of the vision of the other eye, and, moreover, the acuity gained by the deprived eye is often lost after vision is restored to the other eye [8, 31 33]. The recovery of spatial acuity was remarkable in three respects. First, as illustrated in Figure S2, it was complete in all seven animals. Second, the recovery occurred when both eyes were open following MD, a situation where full recovery of vision in the deprived eye never occurs [8]. And third, recovery was observed whether the dark interval occurred immediately (ID group) or even long after (DD group) offset of the amblyogenic event (MD), though the speed of recovery to normal levels differed by a factor of 7 to 10 between the groups. It is unclear whether the discrepant speed of recovery is due to differences in the age when darkness was imposed, the length of the delay between the period of MD and darkness, or a combination of the two. It is possible that the amazing visual recovery may in part be because MD was imposed after binocular cortical architecture was well established, and it may be less pronounced in animals for which MD occurred earlier and lasted longer. Although the benefits for the final acuity outcomes of immediate or delayed darkness were identical, it is possible that one of these conditions provides greater benefits to other visual abilities such as stereoscopic vision. It remains to be seen how the effects of darkness change with age and whether benefits persist at or beyond the end of the critical period for cortical ocular dominance plasticity at 8 to 10 months of age. In this respect, it is noteworthy that darkness imposed on adult Long-Evans rats can promote recovery on some measures from the acuity losses consequent to MD, but behavioral measurements of acuity indicated substantial residual deficits in the situation of binocular recovery [18]. Nonetheless, the fact that darkness was so successful when imposed on MD kittens points to its possible application to amblyopic children in order to boost outcomes of existing therapeutic interventions and thereby enhance career and lifestyle choices. Molecular Mechanisms Although modification of the stable cytoskeleton through reduction of neurofilament is likely one of a multitude of changes that occurs near the end of a cascade of molecular events triggered by darkness, it nevertheless may introduce a level of cytoskeletal instability typical of an earlier and more malleable state that translates to a heightened capacity for structural plasticity. Preliminary behavioral results from one animal indicates that 5 days of darkness is ineffectual at improving vision, so it appears that a close temporal relationship may exist between the behavioral events and changes in neurofilament levels, which were also not different from normal after 5 days of darkness. It is important to recognize that the changes in neurofilament may be mirrored by changes of varying degrees in the levels of other proteins that may serve as brakes on cortical plasticity. In other words, darkness may alter to varying extents the multitude of molecular correlates of cortical maturation that include chondroitin sulfate proteoglycans [34, 35], such as aggrecan [36], which are constituents of the extracellular matrix, Lynx 1 that binds to nicotinic acetylcholine receptors [37], and myelin-related factors [38]. Additionally, it will be of interest to learn how darkness imposed at different ages influences separately the various molecules that may alter the capacity for synaptic modification, such as the ratio of NMDA receptor subunits NR2a/NR2b, which returns to a juvenile state in dark-reared adult rats [39]. Although the mechanisms underlying the recovery in both the ID and DD conditions may overlap, an understanding of the cellular response to darkness imposed at progressively later ages might help to explain, in monocularly deprived animals, the reduced susceptibility of the nondeprived eye to darkness with age. Potential Clinical Application and Open Issues Our results suggest that dark exposure may be entertained as an adjunct to conventional as well as newly developed binocular behavioral therapies [40] for amblyopia that may allow for the acquisition of stereopsis. Before application of this intervention to humans, it would be beneficial to document the strictness of the requirement for darkness in kittens, because this information would have a large impact on the means by which it could be implemented. Also, precise knowledge of the profile of the critical period for the effects of darkness on vision in kittens would help guide the choice of the earliest age at which the manipulation can be applied. Demonstrations of restored plasticity in both the auditory [41] and somatosensory [42] cortex of mature animals by experiential manipulations suggest that heightened plasticity may be induced in sensory regions other than the visual cortex in adulthood. Although knowledge of the molecular changes that are precipitated by the period of darkness might be instructive, it is unlikely that manipulation of just one or a limited number of such molecules would duplicate the effects of darkness itself. The advantage of a simple nonpharmacological sensory manipulation, such as a period of darkness, is that it may initiate changes in a constellation of molecules in a beneficial temporal order and in appropriate brain regions. Supplemental Information Supplemental Information includes two figures and Supplemental Experimental Procedures and can be found with this article online at doi.org/ /j.cub Acknowledgments This research was supported by a grant from the Canadian Institutes of Health Research (102653) to K.R.D. and D.E.M. and by Discovery grants from the Natural Sciences and Engineering Research Council to K.R.D. (298167) and D.E.M. (7660). Additional support was provided by the Critical Period Revisited Network of the James S. McDonnell Foundation. We thank Kaitlyn Holman and Katelyn McNeil for their care of the animals and for assistance with behavioral testing. All 27 kittens used in these studies were born and raised in a closed laboratory breeding colony at Dalhousie University. The breeding and experimental procedures followed protocols approved by the Dalhousie University Committee on Laboratory Animals in accordance with the Canadian Council on Animal Care.

5 Current Biology Vol 23 No Received: September 18, 2012 Revised: December 4, 2012 Accepted: January 3, 2013 Published: February 14, 2013 References 1. Daw, N.W. (2006). Visual Development, Second Edition (New York: Springer). 2. Hensch, T.K. (2004). Critical period regulation. Annu. Rev. Neurosci. 27, Wiesel, T.N., and Hubel, D.H. (1963). Effects of visual deprivation on morphology and physiology of cells in the cat s lateral geniculate body. J. Neurophysiol. 26, Wiesel, T.N., and Hubel, D.H. (1963). Single-cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 26, Guillery, R.W., and Stelzner, D.J. (1970). The differential effects of unilateral lid closure upon the monocular and binocular segments of the dorsal lateral geniculate nucleus in the cat. J. Comp. Neurol. 139, Crair, M.C., Ruthazer, E.S., Gillespie, D.C., and Stryker, M.P. (1997). Relationship between the ocular dominance and orientation maps in visual cortex of monocularly deprived cats. Neuron 19, Dews, P.B., and Wiesel, T.N. (1970). Consequences of monocular deprivation on visual behaviour in kittens. J. Physiol. 206, Mitchell, D.E. (1988). The extent of visual recovery from early monocular or binocular visual deprivation in kittens. J. Physiol. 395, Olson, C.R., and Freeman, R.D. (1980). Profile of the sensitive period for monocular deprivation in kittens. Exp. Brain Res. 39, Jones, K.R., Spear, P.D., and Tong, L. (1984). Critical periods for effects of monocular deprivation: differences between striate and extrastriate cortex. J. Neurosci. 4, Daw, N.W., Fox, K.D., Sato, H., and Czepita, D. (1992). Critical period for monocular deprivation in the cat visual cortex. J. Neurophysiol. 67, Hensch, T.K. (2005). Critical period plasticity in local cortical circuits. Nat. Rev. Neurosci. 6, Morishita, H., and Hensch, T.K. (2008). Critical period revisited: impact on vision. Curr. Opin. Neurobiol. 18, Sale, A., Maya Vetencourt, J.F., Medini, P., Cenni, M.C., Baroncelli, L., De Pasquale, R., and Maffei, L. (2007). Environmental enrichment in adulthood promotes amblyopia recovery through a reduction of intracortical inhibition. Nat. Neurosci. 10, Freeman, R.D., and Olson, C. (1982). Brief periods of monocular deprivation in kittens: effects of delay prior to physiological study. J. Neurophysiol. 47, O Leary, T.P., Kutcher, M.R., Mitchell, D.E., and Duffy, K.R. (2012). Recovery of neurofilament following early monocular deprivation. Front Syst Neurosci. 6, Bienenstock, E.L., Cooper, L.N., and Munro, P.W. (1982). Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J. Neurosci. 2, He, H.Y., Ray, B., Dennis, K., and Quinlan, E.M. (2007). Experiencedependent recovery of vision following chronic deprivation amblyopia. Nat. Neurosci. 10, Cho, K.K.A., and Bear, M.F. (2010). Promoting neurological recovery of function via metaplasticity. Future Neurol. 5, Cooper, L.N., and Bear, M.F. (2012). The BCM theory of synapse modification at 30: interaction of theory with experiment. Nat. Rev. Neurosci. 13, Morris, J.R., and Lasek, R.J. (1982). Stable polymers of the axonal cytoskeleton: the axoplasmic ghost. J. Cell Biol. 92, Bickford, M.E., Guido, W., and Godwin, D.W. (1998). Neurofilament proteins in Y-cells of the cat lateral geniculate nucleus: normal expression and alteration with visual deprivation. J. Neurosci. 18, Duffy, K.R., and Livingstone, M.S. (2005). Loss of neurofilament labeling in the primary visual cortex of monocularly deprived monkeys. Cereb. Cortex 15, Duffy, K.R., and Slusar, J.E. (2009). Monocular deprivation provokes alteration of the neuronal cytoskeleton in developing cat lateral geniculate nucleus. Vis. Neurosci. 26, Duffy, K.R., Murphy, K.M., Frosch, M.P., and Livingstone, M.S. (2007). Cytochrome oxidase and neurofilament reactivity in monocularly deprived human primary visual cortex. Cereb. Cortex 17, Mitchell, D.E., and Timney, B. (1984). Postnatal development of function in the mammalian visual system. In Handbook of Physiology Section I: The Nervous System, Vol. 3, Part I Sensory Processes, I. Darian-Smith, ed. (Washington, DC: American Physiological Society), pp Timney, B., Mitchell, D.E., and Giffin, F. (1978). The development of vision in cats after extended periods of dark-rearing. Exp. Brain Res. 31, Mitchell, D.E., and Gingras, G. (1998). Visual recovery after monocular deprivation is driven by absolute, rather than relative, visually evoked activity levels. Curr. Biol. 8, Mitchell, D.E., Gingras, G., and Kind, P.C. (2001). Initial recovery of vision after early monocular deprivation in kittens is faster when both eyes are open. Proc. Natl. Acad. Sci. USA 98, Kind, P.C., Mitchell, D.E., Ahmed, B., Blakemore, C., Bonhoeffer, T., and Sengpiel, F. (2002). Correlated binocular activity guides recovery from monocular deprivation. Nature 416, Mitchell, D.E., Murphy, K.M., and Kaye, M.G. (1984). The permanence of the visual recovery that follows reverse occlusion of monocularly deprived kittens. Invest. Ophthalmol. Vis. Sci. 25, Murphy, K.M., and Mitchell, D.E. (1987). Reduced visual acuity in both eyes of monocularly deprived kittens following a short or long period of reverse occlusion. J. Neurosci. 7, Mitchell, D.E. (1991). The long-term effectiveness of different regimes of occlusion on recovery from early monocular deprivation in kittens. Philos. Trans. R. Soc. Lond. B Biol. Sci. 333, Hockfield, S., Kalb, R.G., Zaremba, S., and Fryer, H.J. (1990). Expression of neural proteoglycans correlates with the acquisition of mature neuronal properties in the mammalian brain. Cold Spring Harb. Symp. Quant. Biol. 55, Pizzorusso, T., Medini, P., Berardi, N., Chierzi, S., Fawcett, J.W., and Maffei, L. (2002). Reactivation of ocular dominance plasticity in the adult visual cortex. Science 298, Kind, P.C., Sengpiel, F., Beaver, C.J., Crocker-Buque, A., Kelly, G.M., Matthews, R.T., and Mitchell, D.E. (2013). The development and activity-dependent expression of aggrecan in the cat visual cortex. Cereb. Cortex 23, Morishita, H., Miwa, J.M., Heintz, N., and Hensch, T.K. (2010). Lynx 1, a cholinergic brake, limits plasticity in adult visual cortex. Science 330, McGee, A.W., Yang, Y., Fischer, Q.S., Daw, N.W., and Strittmatter, S.M. (2005). Experience-driven plasticity of visual cortex limited by myelin and Nogo receptor. Science 309, He, H.Y., Hodos, W., and Quinlan, E.M. (2006). Visual deprivation reactivates rapid ocular dominance plasticity in adult visual cortex. J. Neurosci. 26, Hess, R.F., Mansouri, B., and Thompson, B. (2010). A binocular approach to treating amblyopia: antisuppression therapy. Optom. Vis. Sci. 87, Zhou, X., Panizzutti, R., de Villers-Sidani, E., Madeira, C., and Merzenich, M.M. (2011). Natural restoration of critical period plasticity in the juvenile and adult primary auditory cortex. J. Neurosci. 31, Mowery, T.M., Sarin, R.M., Elliott, K.S., and E Garraghty, P. (2011). Nerve injury-induced changes in GABA(A) and GABA(B) sub-unit expression in area 3b and cuneate nucleus of adult squirrel monkeys: further evidence of developmental recapitulation. Brain Res. 1415,

deprived eye (reverse occlusion). beyond 1 year of age; only two of six animals recovered sufficient vision to enable

deprived eye (reverse occlusion). beyond 1 year of age; only two of six animals recovered sufficient vision to enable Journal of Physiology (1988), 395, pp. 639-66 639 With 8 text-figures Printed in Great Britain THE EXTENT OF VISUAL RECOVERY FROM EARLY MONOCULAR OR BINOCULAR VISUAL DEPRIVATION IN KITTENS BY DONALD E.

More information

Pre-natal construction of neural circuits (the highways are genetically specified):

Pre-natal construction of neural circuits (the highways are genetically specified): Modification of Brain Circuits as a Result of Experience Chapter 24, Purves et al. 4 th Ed. Pre-natal construction of neural circuits (the highways are genetically specified): (1/6/2010) Mona Buhusi Postnatal

More information

THE POSTNATAL DEVELOPMENT OF THE VISUAL CORTEX AND THE INFLUENCE OF ENVIRONMENT

THE POSTNATAL DEVELOPMENT OF THE VISUAL CORTEX AND THE INFLUENCE OF ENVIRONMENT THE POSTNATAL DEVELOPMENT OF THE VISUAL CORTEX AND THE INFLUENCE OF ENVIRONMENT Nobel lecture, 8 December 1981 by TORSTEN N. WIESEL Harvard Medical School, Department of Neurobiology, Boston, Massachusetts,

More information

Effects of Early Monocular Lid Suture on Spatial and Temporal Sensitivity of Neurons in Dorsal Lateral Geniculate Nucleus of the Cat

Effects of Early Monocular Lid Suture on Spatial and Temporal Sensitivity of Neurons in Dorsal Lateral Geniculate Nucleus of the Cat JOURNALOF NEUROPHYSIOLOGY Vol. 43, No. 2, February 1980. Printed in U.S.A. Effects of Early Monocular Lid Suture on Spatial and Temporal Sensitivity of Neurons in Dorsal Lateral Geniculate Nucleus of the

More information

M. uch interest has recently been focused. Visual development in cats. 394 Pettigrew Investigative Ophthalmology. S.

M. uch interest has recently been focused. Visual development in cats. 394 Pettigrew Investigative Ophthalmology. S. 394 Pettigrew Investigative Ophthalmology May 1972 The one third of recordable cells in three-monthold binocularly sutured animals which you describe as "normal" could only be so called if one used the

More information

Experimental analysis of amblyopia

Experimental analysis of amblyopia Brit. J. Ophthal. (I974) 58, I76 Experimental analysis of amblyopia and strabismus COLIN BLAKEMORE AND RICHARD C. VAN SLUYTERS The Physiological Laboratory, Cambridge In the past few years physiological

More information

Differential Effects of Early Monocular Deprivation on Binocular and Monocular Segments of Cat Striate Cortex

Differential Effects of Early Monocular Deprivation on Binocular and Monocular Segments of Cat Striate Cortex J~uRNALOFNEUROPH YSIOLOGY Vol. 40, No. 4, July 1977. Printed in U.S.A. Differential Effects of Early Monocular Deprivation on Binocular and Monocular Segments of Cat Striate Cortex J. R. WILSON AND S,

More information

Expression of a Surface-Associated Antigen on Y-Cells in the Cat Lateral Geniculate Nucleus Is Regulated by Visual Experience

Expression of a Surface-Associated Antigen on Y-Cells in the Cat Lateral Geniculate Nucleus Is Regulated by Visual Experience The Journal of Neuroscience, March 1988, 8(3): 874-882 Expression of a Surface-Associated Antigen on Y-Cells in the Cat Lateral Geniculate Nucleus Is Regulated by Visual Experience Mriganka Sur, Douglas

More information

Do blue-eyed white cats have normal or abnormal retinofugal pathways? R. W. Guillery, T. L. Hickey, and P. D. Spear

Do blue-eyed white cats have normal or abnormal retinofugal pathways? R. W. Guillery, T. L. Hickey, and P. D. Spear Do blue-eyed white cats have normal or abnormal retinofugal pathways? R. W. Guillery, T. L. Hickey, and P. D. Spear Three white cats that had blue eyes and no tapetum were studied by behavioral, electrophysiological,

More information

Binocular Exposure causes Suppression of the Less Experienced Eye in Cats Previously Reared with Unequal Alternating Monocular Exposure

Binocular Exposure causes Suppression of the Less Experienced Eye in Cats Previously Reared with Unequal Alternating Monocular Exposure Binocular Exposure causes Suppression of the Less Experienced Eye in Cats Previously Reared with Unequal Alternating Monocular Exposure Nino Tumosa,* Stacy Nunberg, Helmut V. B. Hirsch, and Suzannah Bliss

More information

Rapid Anatomical Plasticity of Horizontal Connections in the Developing Visual Cortex

Rapid Anatomical Plasticity of Horizontal Connections in the Developing Visual Cortex The Journal of Neuroscience, May 15, 2001, 21(10):3476 3482 Rapid Anatomical Plasticity of Horizontal Connections in the Developing Visual Cortex Joshua T. Trachtenberg and Michael P. Stryker Department

More information

preferring rightward movement. A changeover later than 5 weeks of age peak of the critical period for directional deprivation may occur earlier

preferring rightward movement. A changeover later than 5 weeks of age peak of the critical period for directional deprivation may occur earlier J. Physiol. (1976), 257, pp. 155-170 155 With 5 text-figures Printed in Great Britain KITTENS REARED IN A UNIDIRECTIONAL ENVIRONMENT: EVIDENCE FOR A CRITICAL PERIOD BY N. W. DAW AND H. J. WYATT* From the

More information

injected eve. (Received 1 November 1977) with electrolytic lesions. A good correspondence was found between the location of

injected eve. (Received 1 November 1977) with electrolytic lesions. A good correspondence was found between the location of J. Physiol. (1978), 281, pp. 267-283 267 With 6 plates and 3 text-figures Printed in Great Britain OCULAR DOMINANCE IN LAYER IV OF THE CAT'S VISUAL CORTEX AND THE EFFECTS OF MONOCULAR DEPRIVATION By CARLA

More information

Cortical Cell Orientation Selectivity Fails to Develop in the Absence of ON-Center Retinal Ganglion Cell Activity

Cortical Cell Orientation Selectivity Fails to Develop in the Absence of ON-Center Retinal Ganglion Cell Activity The Journal of Neuroscience, March 1, 2000, 20(5):1922 1930 Cortical Cell Orientation Selectivity Fails to Develop in the Absence of ON-Center Retinal Ganglion Cell Activity Barbara Chapman and Imke Gödecke

More information

UTILITY OF THE NEUROLOGICAL EXAMINATION IN RATS

UTILITY OF THE NEUROLOGICAL EXAMINATION IN RATS ACTA NEUROBIOL. ELW. 1980, 40 : 999-3 Short communication UTILITY OF THE NEUROLOGICAL EXAMINATION IN RATS David E. TUPPER and Robert B. WALLACE Laboratory of Developmental Psychobiology, University of

More information

Effects of Convergent Strabismus on the Development of Physiologically Identified Retinogeniculate Axons ih Cats

Effects of Convergent Strabismus on the Development of Physiologically Identified Retinogeniculate Axons ih Cats THE JOURNAL OF COMPARATIVE NEUROLOGY 28922-212 (1989) Effects of Convergent Strabismus on the Development of Physiologically Identified Retinogeniculate Axons ih Cats P.E. GARRAGHTY, A.W. ROE, Y.M. CHINO,

More information

PATTERN EVOKED RESPONSE DEFICIENCY IN PATTERN DEPRIVED CATS 1

PATTERN EVOKED RESPONSE DEFICIENCY IN PATTERN DEPRIVED CATS 1 Electroencephalography and Clinical Neurophysiology, 1973, 35: 569-573 Elsevier Scientific Publishing Company, Amsterdam - Printed in The Netherlands 569 PATTERN EVOKED RESPONSE DEFICIENCY IN PATTERN DEPRIVED

More information

The Critical Period for Ocular Dominance Plasticity in the Ferret s Visual Cortex

The Critical Period for Ocular Dominance Plasticity in the Ferret s Visual Cortex The Journal of Neuroscience, August 15, 1999, 19(16):6965 6978 The Critical Period for Ocular Dominance Plasticity in the Ferret s Visual Cortex Naoum P. Issa, Joshua T. Trachtenberg, Barbara Chapman,

More information

My recollections of Hubel and Wiesel and a brief review of functional circuitry in the visual pathway

My recollections of Hubel and Wiesel and a brief review of functional circuitry in the visual pathway J Physiol 587.12 (2009) pp 2783 2790 2783 TOPICAL REVIEW My recollections of Hubel and Wiesel and a brief review of functional circuitry in the visual pathway Jose-Manuel Alonso Department of Biological

More information

Supplementary Material

Supplementary Material 10.1071/HR17008_AC CSIRO 2018 Supplementary Material: Historical Records of Australian Science, 2018, 29(2), 162 171. Supplementary Material Peter Orlebar Bishop 1917 2012 Jack D. Pettigrew A and Bogdan

More information

Consequences of alternating monocular deprivation on eye alignment and convergence in cats. Randolph Blake, M. L. ]. Crawford, and Helmut V. B.

Consequences of alternating monocular deprivation on eye alignment and convergence in cats. Randolph Blake, M. L. ]. Crawford, and Helmut V. B. Consequences of alternating monocular deprivation on eye alignment and convergence in cats Randolph Blake, M. L. ]. Crawford, and Helmut V. B. Hirsch Four kittens were raised with an opaque contact lens

More information

abnormal lateral geniculate body. His anatomical study suggested that chiasm instead of remaining uncrossed. They thus reach the wrong hemispheres,

abnormal lateral geniculate body. His anatomical study suggested that chiasm instead of remaining uncrossed. They thus reach the wrong hemispheres, J. Physiol. (1971), 218, pp. 33-62 33 With 1 plate and 9 text-figures Printed in Great Britain ABERRANT VISUAL PROJECTIONS IN THE SIAMESE CAT BY D. H. HUBEL AND T. N. WIESEL From the Department of Neurobiology,

More information

Spatial and Temporal Sensitivity of Normal and Amblyopic Cats

Spatial and Temporal Sensitivity of Normal and Amblyopic Cats JOURNALOF NEUROPHYSIOLOGY Vol. 48, No. 2, August 1982. Printed in U.S.A. Spatial and Temporal Sensitivity of Normal and Amblyopic Cats STEPHEN LEHMKUHLE, KENNETH E. KRATZ, AND S. MURRAY SHERMAN Department

More information

Serendipity and the Siamese Cat: The Discovery That Genes for Coat and Eye Pigment Affect the Brain. Jon H. Kaas

Serendipity and the Siamese Cat: The Discovery That Genes for Coat and Eye Pigment Affect the Brain. Jon H. Kaas Serendipity and the Siamese Cat: The Discovery That Genes for Coat and Eye Pigment Affect the Brain Jon H. Kaas Abstract One day in the late 1960s, Ray Guillery was examining brain sections through the

More information

Binocular Impulse Blockade Prevents the Formation of Ocular Dominance Columns in Cat Visual Cortex

Binocular Impulse Blockade Prevents the Formation of Ocular Dominance Columns in Cat Visual Cortex The Journal of Neuroscience August 1986, f?(8): 2117-2133 Binocular Impulse Blockade Prevents the Formation of Ocular Dominance Columns in Cat Visual Cortex Michael P. Stryker and William A. Harris Department

More information

PERSONAL ACADEMIC RECORD PROFESSIONAL EXPERIENCE. Curriculum Vitae for S. Murray Sherman Page 1

PERSONAL ACADEMIC RECORD PROFESSIONAL EXPERIENCE. Curriculum Vitae for S. Murray Sherman Page 1 Curriculum Vitae for S. Murray Sherman Page 1 PERSONAL Born on January 4, 1944, in Pittsburgh, Pennsylvania Married, two children Address: Department of Neurobiology, Pharmacology & Physiology University

More information

David H. Hubel. A Biographical Memoir by Robert H. Wurtz

David H. Hubel. A Biographical Memoir by Robert H. Wurtz David H. Hubel 1926 2013 A Biographical Memoir by Robert H. Wurtz 2014 National Academy of Sciences. Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views

More information

E erimental Brain Research 9 Springer-Verlag 1986

E erimental Brain Research 9 Springer-Verlag 1986 Exp Brain Res (1986) 64:11%126 E erimental Brain Research 9 Springer-Verlag 1986 Effects of monocular deprivation in the nucleus rotundus of zebra finches: a Nissl and deoxyglucose study K. Herrmann and

More information

lowering of the visual acuity. When closure was extended through the first by varying the age at eye closure. Waiting until 1 month of age

lowering of the visual acuity. When closure was extended through the first by varying the age at eye closure. Waiting until 1 month of age J. Physiol. (1970), 206, pp. 437-455 437 With 6 text-ftgure8 Printed in Great Britain CONSEQUENCES OF MONOCULAR DEPRIVATION ON VISUAL BEHAVIOUR IN KITTENS BY P. B. DEWS AND T. N. WIESEL From the Laboratory

More information

WHY DO ALBINOS AND OTHER HYPOPIGMENTED MUTANTS LACK NORMAL BINOCULAR VISION, AND WHAT ELSE IS ABNORMAL IN THEIR CENTRAL VISUAL PATHWAYS?

WHY DO ALBINOS AND OTHER HYPOPIGMENTED MUTANTS LACK NORMAL BINOCULAR VISION, AND WHAT ELSE IS ABNORMAL IN THEIR CENTRAL VISUAL PATHWAYS? WHY DO ALBINOS AND OTHER HYPOPIGMENTED MUTANTS LACK NORMAL BINOCULAR VISION, AND WHAT ELSE IS ABNORMAL IN THEIR CENTRAL VISUAL PATHWAYS? Oxford EARLY OBSERVATIONS OF THE PATHWAY ABNORMALITY It is now 30

More information

INHERITANCE OF BODY WEIGHT IN DOMESTIC FOWL. Single Comb White Leghorn breeds of fowl and in their hybrids.

INHERITANCE OF BODY WEIGHT IN DOMESTIC FOWL. Single Comb White Leghorn breeds of fowl and in their hybrids. 440 GENETICS: N. F. WATERS PROC. N. A. S. and genetical behavior of this form is not incompatible with the segmental interchange theory of circle formation in Oenothera. Summary.-It is impossible for the

More information

Active sensing. Ehud Ahissar

Active sensing. Ehud Ahissar Active sensing Ehud Ahissar 1 Active sensing Passive vs active sensing (touch) Comparison across senses Basic coding principles -------- Perceptual loops Sensation-targeted motor control Proprioception

More information

Area Centralis Position Relative to the Optic Disc Projection in Kittens as o Function of Age

Area Centralis Position Relative to the Optic Disc Projection in Kittens as o Function of Age Investigative Ophthalmology & Visual Science, Vol. 29, No. 8, August 1988 Copyright Association.for Research in Vision and Ophthalmology Area Centralis Position Relative to the Optic Disc Projection in

More information

Australian Journal of Basic and Applied Sciences. Performance Analysis of Different Types of Adder Using 3-Transistor XOR Gate

Australian Journal of Basic and Applied Sciences. Performance Analysis of Different Types of Adder Using 3-Transistor XOR Gate ISSN:1991-8178 Australian Journal of Basic and Applied Sciences Journal home page: www.ajbasweb.com Performance Analysis of Different Types of Adder Using 3-Transistor XOR Gate Lourdy Nivethitha, V. and

More information

A SINGLE VIBRISSAL COLUMN IN THE FIRST SOMATOSENSORY CORTEX OF THE MOUSE DEMONSTRATED WITH 2-DEOXYGLUCOSE

A SINGLE VIBRISSAL COLUMN IN THE FIRST SOMATOSENSORY CORTEX OF THE MOUSE DEMONSTRATED WITH 2-DEOXYGLUCOSE ACTA NEUROBIOL. EXP. 1984, 44: 83-88 Short communication A SINGLE VIBRISSAL COLUMN IN THE FIRST SOMATOSENSORY CORTEX OF THE MOUSE DEMONSTRATED WITH 2-DEOXYGLUCOSE J. CHMIELOWSKA and M. KOSSUT Department

More information

This article is downloaded from.

This article is downloaded from. This article is downloaded from http://researchoutput.csu.edu.au It is the paper published as: Author: A. Wichman, L. Rogers and R. Freire Title: Visual lateralisation and development of spatial and social

More information

Permanent Alterations in Muscarinic Receptors and Pupil Size Produced by Chronic Atropinization in Kittens

Permanent Alterations in Muscarinic Receptors and Pupil Size Produced by Chronic Atropinization in Kittens No. 2 Reports 239 Permanent Alterations in Muscarinic Receptors and Pupil Size Produced by Chronic Atropinization in Kittens Earl L. Smith III,* Dianna A. Redburn,f Ronald 5. Harwerrh,* and Gregory W.

More information

An Evaluation of Respondent Conditioning Procedures to Decrease Barking in an Animal Shelter

An Evaluation of Respondent Conditioning Procedures to Decrease Barking in an Animal Shelter 2017 Vol. 3 19-24 An Evaluation of Respondent Conditioning Procedures to Decrease Barking in an Animal Shelter Payen, S. W*. and Assemi, K.S. Abstract A common problem behavior in animal shelters is excessive

More information

Parallel Processing in the Visual System THE CLASSIFICATION OF RETINAL GANGLION CELLS AND ITS IMPACT ON THE NEUROBIOLOGY OF VISION

Parallel Processing in the Visual System THE CLASSIFICATION OF RETINAL GANGLION CELLS AND ITS IMPACT ON THE NEUROBIOLOGY OF VISION Parallel Processing in the Visual System THE CLASSIFICATION OF RETINAL GANGLION CELLS AND ITS IMPACT ON THE NEUROBIOLOGY OF VISION PERSPECTIVES IN VISION RESEARCH Series Editor: Colin Blakemore University

More information

EDUCATION AND PRODUCTION. Layer Performance of Four Strains of Leghorn Pullets Subjected to Various Rearing Programs

EDUCATION AND PRODUCTION. Layer Performance of Four Strains of Leghorn Pullets Subjected to Various Rearing Programs EDUCATION AND PRODUCTION Layer Performance of Four Strains of Leghorn Pullets Subjected to Various Rearing Programs S. LEESON, L. CASTON, and J. D. SUMMERS Department of Animal and Poultry Science, University

More information

Publication list Peer-reviewed papers

Publication list Peer-reviewed papers Publication list Peer-reviewed papers 1.# Scheffrahn,#W.,#Lipp,#H.2P.,#and#Mahler,#M.#(1975).#Serumproteine#und#Erythrozytenenzyme#bei#Callithrix)jacchus# (Platyrrhina).#Archiv#für#Genetik#47,#962104.#

More information

Effects of Retinal Image Degradation on Ocular Growth in Cats

Effects of Retinal Image Degradation on Ocular Growth in Cats Effects of Retinal Image Degradation on Ocular Growth in Cats J. Nathan, 5. G. Crewrher,* D. P. Crewrher,* and P. M. Kielyf High-powered negative and positive contact lenses have been used to produce a

More information

geniculate nucleus of kittens raised with convergent squint in one eye,

geniculate nucleus of kittens raised with convergent squint in one eye, J. Phyaiol. (1977), 270, pp. 345-366 345 With 1 plate and 9 text-ftgure8 Printed in Great Britain NASAL FIELD LOSS IN KITTENS REARED WITH CONVERGENT SQUINT: NEUROPHYSIOLOGICAL AND MORPHOLOGICAL STUDIES

More information

Manhattan and quantile-quantile plots (with inflation factors, λ) for across-breed disease phenotypes A) CCLD B)

Manhattan and quantile-quantile plots (with inflation factors, λ) for across-breed disease phenotypes A) CCLD B) Supplementary Figure 1: Non-significant disease GWAS results. Manhattan and quantile-quantile plots (with inflation factors, λ) for across-breed disease phenotypes A) CCLD B) lymphoma C) PSVA D) MCT E)

More information

Social Housing and Environmental Enrichment Policy

Social Housing and Environmental Enrichment Policy Social Housing and Environmental Enrichment Policy Purpose: This document sets forth the policy for housing social species and examples of environmental enrichment that must be provided to all species.

More information

Broom, D.M In Proceedings of Aquavision 1999, 1-6. Stavanger: Proceedings of Aquavision. Fish welfare and the public perception of farmed fish

Broom, D.M In Proceedings of Aquavision 1999, 1-6. Stavanger: Proceedings of Aquavision. Fish welfare and the public perception of farmed fish Broom, D.M. 1999. In Proceedings of Aquavision 1999, 1-6. Stavanger: Proceedings of Aquavision. Pre-publication copy Fish welfare and the public perception of farmed fish D.M. Broom Department of Clinical

More information

Morphology of Retinogeniculate X and Y Axon Arbors in Cats Raised With Binocular Lid Suture

Morphology of Retinogeniculate X and Y Axon Arbors in Cats Raised With Binocular Lid Suture JOURNALOFNEUROPHYSIOLOGY Vol. 60, No. 6, December 1988. Printed Morphology of Retinogeniculate X and Y Axon Arbors in Cats Raised With Binocular Lid Suture DENIS RACZKOWSKI, DANIEL J. UHLRICH, AND S. MURRAY

More information

Ascending Projections of Simple and Complex Cells in Layer 6 of the Cat Striate Cortex

Ascending Projections of Simple and Complex Cells in Layer 6 of the Cat Striate Cortex The Journal of Neuroscience, October 1, 1998, 18(19):8086 8094 Ascending Projections of Simple and Complex Cells in Layer 6 of the Cat Striate Cortex Judith A. Hirsch, Christine A. Gallagher, José-Manuel

More information

BEHAVIOURAL OR MEDICAL? ANXIETY DISORDERS IN OLDER ANIMALS. Dr Kersti Seksel BVSc (Hons), MRCVS, MA (Hons), FACVSc, DACVB, CMAVA, DECVBM-CA

BEHAVIOURAL OR MEDICAL? ANXIETY DISORDERS IN OLDER ANIMALS. Dr Kersti Seksel BVSc (Hons), MRCVS, MA (Hons), FACVSc, DACVB, CMAVA, DECVBM-CA BEHAVIOURAL OR MEDICAL? ANXIETY DISORDERS IN OLDER ANIMALS Dr Kersti Seksel BVSc (Hons), MRCVS, MA (Hons), FACVSc, DACVB, CMAVA, DECVBM-CA Registered Veterinary Specialist in Behavioural Medicine www.sabs.com.au

More information

BEHAVIOUR OF THE DOMESTIC DOG (Canis familiaris)

BEHAVIOUR OF THE DOMESTIC DOG (Canis familiaris) THE INFLUENCE OF CEREBRAL LATERALISATION ON THE BEHAVIOUR OF THE DOMESTIC DOG (Canis familiaris) A thesis submitted for the Degree of DOCTOR OF PHILOSOPHY by Luke Aaron Schneider B. A. (Hons) School of

More information

Evaluation of the hair growth and retention activity of two solutions on human hair explants

Evaluation of the hair growth and retention activity of two solutions on human hair explants activity of two solutions on human hair explants Study Directed by Dr E. Lati of Laboratoire Bio-EC, Centre de Recherches Biologiques et d Experimentations Cutanees, on behalf of Pangaea Laboratories Ltd.

More information

log no. VNS23011 Ocular dominance columns in strabismus VNS23~6! :31 pm

log no. VNS23011 Ocular dominance columns in strabismus VNS23~6! :31 pm VNS23~6! 23011 1011 07007006 2:31 pm log no. VNS23011 Visual Neuroscience ~2006!, 23, 1 11. Printed in the USA. Copyright 2006 Cambridge University Press 0952-5238006 $16.00 DOI: 10.10170S0952523806230116

More information

Health and Welfare of Resreach Animals. Richard E. Brown Psychology Department Dalhousie University Halifax, Nova Scotia Canada B3H 4J1

Health and Welfare of Resreach Animals. Richard E. Brown Psychology Department Dalhousie University Halifax, Nova Scotia Canada B3H 4J1 Health and Welfare of Resreach Animals Richard E. Brown Psychology Department Dalhousie University Halifax, Nova Scotia Canada B3H 4J1 What is Animal Welfare? Concern for the well-being of research animals

More information

EverGraze: pastures to improve lamb weaning weights

EverGraze: pastures to improve lamb weaning weights EverGraze: pastures to improve lamb weaning weights S.M. Robertson and M.A. Friend EH Graham Centre for Agricultural Innovation, Charles Sturt University and NSW Department of Primary Industries, Wagga

More information

The contralateral impairment of the orienting ocular-following reflex after lesions of the lateral suprasylvian cortex in cats

The contralateral impairment of the orienting ocular-following reflex after lesions of the lateral suprasylvian cortex in cats The contralateral impairment of the orienting ocular-following reflex after lesions of the lateral suprasylvian cortex in cats Boguslaw ~ernicki and Maciej Stasiak Department of Neurophysiology, Nencki

More information

Use of the Animal Welfare Assessment Grid to assess the life time experience of animals and cumulative severity of procedures

Use of the Animal Welfare Assessment Grid to assess the life time experience of animals and cumulative severity of procedures Use of the Animal Welfare Assessment Grid to assess the life time experience of animals and cumulative severity of procedures Sarah Wolfensohn OBE BSc MA VetMB CertLAS FSB DipECLAM DipECAWBM-WSEL MRCVS

More information

THE JOURNAL OF COMPARATIVE NEUROLOGY 233: (1985)

THE JOURNAL OF COMPARATIVE NEUROLOGY 233: (1985) THE JOURNAL OF COMPARATIVE NEUROLOGY 233:190-212 (1985) Termination Patterns of Individual XI and Y-Cell Axons in the Visual Cortex of the Cat: Projections to Area 18, to the 17/18 Border Region, and to

More information

CLARSBISHOP AREA IN THE CAT: LOCATION AIVD RETINOTOPICAL PROJECTION

CLARSBISHOP AREA IN THE CAT: LOCATION AIVD RETINOTOPICAL PROJECTION ACTA NEUROBIOL. EXP. 1975, 35: 179488 CLARSBISHOP AREA IN THE CAT: LOCATION AIVD RETINOTOPICAL PROJECTION Krzysztof TURLEJSKI and Andrzej MICHALSKI Department of Neurophysiology, Nencki Institute of Experimental

More information

Taste and Smell. Bởi: OpenStaxCollege

Taste and Smell. Bởi: OpenStaxCollege Bởi: OpenStaxCollege Taste, also called gustation, and smell, also called olfaction, are the most interconnected senses in that both involve molecules of the stimulus entering the body and bonding to receptors.

More information

Horizontal Interactions in Cat Striate Cortex: 111. Receptive Fields and Transient Exuberance of Tangential Interactions

Horizontal Interactions in Cat Striate Cortex: 111. Receptive Fields and Transient Exuberance of Tangential Interactions European Journal of Neuroscience, Vol. 2, pp. 369-3 @ European Neuroscience Association 093-81 W90 $3.00 Horizontal Interactions in Cat Striate Cortex: 111. Receptive Fields and Transient Exuberance of

More information

Development of Neuronal Response Properties in the Cat Dorsal Lateral Geniculate Nucleus During Monocular

Development of Neuronal Response Properties in the Cat Dorsal Lateral Geniculate Nucleus During Monocular JOURNALOF NEUROPHYSIOLOGY Vol. 5, No. 1, July 1983. Printed in U.S.A. Development of Neuronal Response Properties in the Cat Dorsal Lateral Geniculate Nucleus During Monocular Deprivation STUART C. MANGEL,

More information

Rules of Connectivity between Geniculate Cells and Simple Cells in Cat Primary Visual Cortex

Rules of Connectivity between Geniculate Cells and Simple Cells in Cat Primary Visual Cortex The Journal of Neuroscience, June 1, 2001, 21(11):4002 4015 Rules of Connectivity between Geniculate Cells and Simple Cells in Cat Primary Visual Cortex Jose-Manuel Alonso, 1,2 W. Martin Usrey, 1,3 and

More information

Changes to the IACUC s Environmental Enrichment Policy Addition of the IACUC s Social Housing Policy

Changes to the IACUC s Environmental Enrichment Policy Addition of the IACUC s Social Housing Policy Changes to the IACUC s Environmental Enrichment Policy Addition of the IACUC s Social Housing Policy What is enrichment, why it is important? Why the revision? The Guide. Revision to the IACUC enrichment

More information

Binocular Interactions in Striate Cortical Neurons of Cats Reared with Discordant Visual Inputs

Binocular Interactions in Striate Cortical Neurons of Cats Reared with Discordant Visual Inputs The Journal of Neuroscience, August 1994, 14(8): 55-567 Binocular Interactions in Striate Cortical Neurons of Cats Reared with Discordant Visual Inputs Yuzo M. Chino, Earl L. Smith III, Kazuyuki Yoshida,

More information

Spatial Analysis of Ocular Dominance Patterns in Monocularly Deprived Cats

Spatial Analysis of Ocular Dominance Patterns in Monocularly Deprived Cats Spatial Analysis of Ocular Dominance Patterns in Monocularly Deprived Cats Kerstin E. Schmidt, Michael Stephan, Wolf Singer and Siegrid Löwel 1 Max-Planck-Institut für Hirnforschung, Neurophysiologische

More information

ANNUAL STATISTICAL REPORT FOR ANIMALS USED IN IRELAND UNDER SCIENTIFIC ANIMAL PROTECTION LEGISLATION

ANNUAL STATISTICAL REPORT FOR ANIMALS USED IN IRELAND UNDER SCIENTIFIC ANIMAL PROTECTION LEGISLATION ANNUAL STATISTICAL REPORT FOR ANIMALS USED IN IRELAND UNDER SCIENTIFIC ANIMAL PROTECTION LEGISLATION 2015 CONTENTS 1. Introduction 2. Summary 3. Results 3.1 Species and numbers of naïve animals used in

More information

Epigenetic regulation of Plasmodium falciparum clonally. variant gene expression during development in An. gambiae

Epigenetic regulation of Plasmodium falciparum clonally. variant gene expression during development in An. gambiae Epigenetic regulation of Plasmodium falciparum clonally variant gene expression during development in An. gambiae Elena Gómez-Díaz, Rakiswendé S. Yerbanga, Thierry Lefèvre, Anna Cohuet, M. Jordan Rowley,

More information

Design of High Speed Vedic Multiplier Using Carry Select Adder with Brent Kung Adder

Design of High Speed Vedic Multiplier Using Carry Select Adder with Brent Kung Adder Design of High Speed Vedic Multiplier Using Carry Select Adder with Brent Kung Adder Kathi Anoosha M.Tech(VLSI&ES), AVN Institute of Engineering and Technology. Sasi Kiran, M.Tech Assistant Professor,

More information

Long-Term Selection for Body Weight in Japanese Quail Under Different Environments

Long-Term Selection for Body Weight in Japanese Quail Under Different Environments Long-Term Selection for Body Weight in Japanese Quail Under Different Environments H. L. MARKS USDA, Agricultural Research Service, Southeastern Poultry Research Laboratory, c/o The University of Georgia,

More information

The Role of Early Experience in the Development and Maintenance of Orientation Selectivity in the Cat's Visual Cortex: M. Stryker

The Role of Early Experience in the Development and Maintenance of Orientation Selectivity in the Cat's Visual Cortex: M. Stryker Reprinted from Neurosciences Research \rogram Bulleti~ VOl~e IS, Number 3, Neuronal mechan1sms 1n visual perception E. P~p~el, R. Held & J.E. Dowling, edito;s (Cambr1dge, Mass.: MIT Press, 1977) Pages

More information

Overlap of sensory representations in rat barrel cortex after neonatal vibrissectomy

Overlap of sensory representations in rat barrel cortex after neonatal vibrissectomy Overlap of sensory representations in rat barrel cortex after neonatal vibrissectomy Malgorzata Kossut and Ewa Siucinska Department of Neurophysiology, Nencki Institute of Experimental Biology, 3 Pasteur

More information

(Received 22 November 1984) studies were made on twenty such pairs; eight X on-centre, seven Y on-centre, two

(Received 22 November 1984) studies were made on twenty such pairs; eight X on-centre, seven Y on-centre, two J. Physiol. (1985), 369, pp. 249-268 249 With 12 text-ftgures Printed in Great Britain A COMPARISON OF VISUAL RESPONSES OF CAT LATERAL GENICULATE NUCLEUS NEURONES WITH THOSE OF GANGLION CELLS AFFERENT

More information

On and off domains of geniculate afferents in cat primary visual cortex

On and off domains of geniculate afferents in cat primary visual cortex 28 Nature Publishing Group http://www.nature.com/natureneuroscience On and off domains of geniculate afferents in cat primary visual cortex Jianzhong Z Jin 1, Chong Weng 1, Chun-I Yeh 1,2, Joshua A Gordon

More information

How the eye sees. Properties of light. The light-gathering parts of the eye. 1. Properties of light. 2. The anatomy of the eye. 3.

How the eye sees. Properties of light. The light-gathering parts of the eye. 1. Properties of light. 2. The anatomy of the eye. 3. How the eye sees 1. Properties of light 2. The anatomy of the eye 3. Visual pigments 4. Color vision 1 Properties of light Light is made up of particles called photons Light travels as waves speed of light

More information

INDIVIDUAL IDENTIFICATION OF GREEN TURTLE (CHELONIA MYDAS) HATCHLINGS

INDIVIDUAL IDENTIFICATION OF GREEN TURTLE (CHELONIA MYDAS) HATCHLINGS INDIVIDUAL IDENTIFICATION OF GREEN TURTLE (CHELONIA MYDAS) HATCHLINGS Ellen Ariel, Loïse Corbrion, Laura Leleu and Jennifer Brand Report No. 15/55 Page i INDIVIDUAL IDENTIFICATION OF GREEN TURTLE (CHELONIA

More information

spider monkeys by recording extracellularly from single units and stimulating

spider monkeys by recording extracellularly from single units and stimulating J. Physiol. (1968), 195, pp. 215-243 215 With 3 plates and 14 text-figures Printed in Great Britain RECEPTIVE FIELDS AND FUNCTIONAL ARCHITECTURE OF MONKEY STRIATE CORTEX By D. H. HUBEL AND T. N. WIESEL

More information

Emergence of Ocular Dominance Columns in Cat Visual Cortex by 2 Weeks of Age

Emergence of Ocular Dominance Columns in Cat Visual Cortex by 2 Weeks of Age THE JOURNAL OF COMPARATIVE NEUROLOGY 430:235 249 (2001) Emergence of Ocular Dominance Columns in Cat Visual Cortex by 2 Weeks of Age MICHAEL C. CRAIR, 1,2 JONATHAN C. HORTON, 3 ANTONELLA ANTONINI, 1 AND

More information

University of Canberra. This thesis is available in print format from the University of Canberra Library.

University of Canberra. This thesis is available in print format from the University of Canberra Library. University of Canberra This thesis is available in print format from the University of Canberra Library. If you are the author of this thesis and wish to have the whole thesis loaded here, please contact

More information

THE PRETRIGEMINAL CAT AS AN INSTRUMENT FOR INVESTIGATION OF THE OCULAR FIXATION REFLEX

THE PRETRIGEMINAL CAT AS AN INSTRUMENT FOR INVESTIGATION OF THE OCULAR FIXATION REFLEX ACTA NEUROBIOL. EXP. 1980, 40: 381-385 Lecture delivered at the Warsaw Colloquium on Instrumental Conditioning and Brain Research May 1979 THE PRETRIGEMINAL CAT AS AN INSTRUMENT FOR INVESTIGATION OF THE

More information

Effects of Feedback Projections From Area 18 Layers 2/3 to Area 17 Layers 2/3 in the Cat Visual Cortex

Effects of Feedback Projections From Area 18 Layers 2/3 to Area 17 Layers 2/3 in the Cat Visual Cortex Effects of Feedback Projections From Area 18 Layers 2/3 to Area 17 Layers 2/3 in the Cat Visual Cortex SUSANA MARTINEZ-CONDE, 1 JAVIER CUDEIRO, 1,2 KENNETH L. GRIEVE, 3 ROSA RODRIGUEZ, 1 CASTO RIVADULLA,

More information

Dealing with dairy cow lameness applying knowledge on farm

Dealing with dairy cow lameness applying knowledge on farm Vet Times The website for the veterinary profession https://www.vettimes.co.uk Dealing with dairy cow lameness applying knowledge on farm Author : James Dixon Categories : Farm animal, Vets Date : March

More information

In the first half of the 20th century, Dr. Guido Fanconi published detailed clinical descriptions of several heritable human diseases.

In the first half of the 20th century, Dr. Guido Fanconi published detailed clinical descriptions of several heritable human diseases. In the first half of the 20th century, Dr. Guido Fanconi published detailed clinical descriptions of several heritable human diseases. Two disease syndromes were named after him: Fanconi Anemia and Fanconi

More information

Differences in Projection Patterns between Large and Small Corticothalamic Terminals

Differences in Projection Patterns between Large and Small Corticothalamic Terminals THE JOURNAL OF COMPARATIVE NEUROLOGY 475:406 415 (2004) Differences in Projection Patterns between Large and Small Corticothalamic Terminals SUSAN C. VAN HORN AND S. MURRAY SHERMAN* Department of Neurobiology,

More information

Your Eye, My Eye, and the Eye of the Aye Aye: Evolution of Human Vision from 65 Million Years Ago to the Present

Your Eye, My Eye, and the Eye of the Aye Aye: Evolution of Human Vision from 65 Million Years Ago to the Present # 75 Your Eye, My Eye, and the Eye of the Aye Aye: Evolution of Human Vision from 65 Million Years Ago to the Present Dr. Christopher Kirk December 2, 2011 Produced by and for Hot Science - Cool Talks

More information

Body Weight and Egg Production Performance of Induced Moulted White Leghorn Layers*

Body Weight and Egg Production Performance of Induced Moulted White Leghorn Layers* International Journal of Poultry Science 5 (10): 996-1000, 2006 ISSN 1682-8356 Asian Network for Scientific Information, 2006 Body Weight and Egg Production Performance of Induced Moulted White Leghorn

More information

Distance and the presentation of visual stimuli to birds

Distance and the presentation of visual stimuli to birds Anim. Behav., 1997, 54, 1019 1025 Distance and the presentation of visual stimuli to birds MARIAN STAMP DAWKINS & ALAN WOODINGTON Department of Zoology, University of Oxford (Received 16 October 1996;

More information

Cardiac MRI Morphology 2004

Cardiac MRI Morphology 2004 Cardiac MRI Morphology 2004 1 2 Disclaimers The information in this presentation is strictly educational and is not intended to be used for instruction as to the practice of medicine. Healthcare practitioners

More information

Eliminate Pre-sterilization Litters by Spaying Before the First Estrus: Making the Case to your Veterinarian. Richard Speck, DVM

Eliminate Pre-sterilization Litters by Spaying Before the First Estrus: Making the Case to your Veterinarian. Richard Speck, DVM Eliminate Pre-sterilization Litters by Spaying Before the First Estrus: Making the Case to your Veterinarian. Richard Speck, DVM Position Statements AVMA: The AVMA supports the concept of pediatric spay/neuter

More information

Behavioral Characteristics of Scent Marking Behavior in. The Mongolian gerbil (Meriones unguiculatus)

Behavioral Characteristics of Scent Marking Behavior in. The Mongolian gerbil (Meriones unguiculatus) Exp. Anim. 30 (2), 107-112, 1981 Behavioral Characteristics Scent Marking Behavior in Mongolian Gerbil (Meriones unguiculus). Hiroyuki YOSHIMURA Department Pharmacology School Medicine Ehime University

More information

TITLE: Polymicrobial Chronic Infection Including Acinetobacter baumannii in a Plated Segmental Defect in the Rat Femur

TITLE: Polymicrobial Chronic Infection Including Acinetobacter baumannii in a Plated Segmental Defect in the Rat Femur AD Award Number: W81XWH-07-1-0195 TITLE: Polymicrobial Chronic Infection Including Acinetobacter baumannii in a Plated Segmental Defect in the Rat Femur PRINCIPAL INVESTIGATOR: Dean T. Tsukayama, MD CONTRACTING

More information

Eliminate Pre-sterilization Litters by Spaying Before the First Estrus: Making the Case to your Veterinarian. Richard Speck, DVM

Eliminate Pre-sterilization Litters by Spaying Before the First Estrus: Making the Case to your Veterinarian. Richard Speck, DVM Eliminate Pre-sterilization Litters by Spaying Before the First Estrus: Making the Case to your Veterinarian. Richard Speck, DVM AVMA: The AVMA supports the concept of pediatric spay/neuter in dogs and

More information

Antimicrobial Selection to Combat Resistance

Antimicrobial Selection to Combat Resistance Antimicrobial Selection to Combat Resistance (Dead Bugs Don t Mutate!) Shelley C Rankin PhD Associate Professor CE Microbiology Head of Diagnostic Services & Chief of Clinical Microbiology Ryan Veterinary

More information

2017 ANIMAL SHELTER STATISTICS

2017 ANIMAL SHELTER STATISTICS 2017 ANIMAL SHELTER STATISTICS INTRODUCTION Dogs and cats are by far Canada s most popular companion animals. In 2017, there were an estimated 7.4 million owned dogs and 9.3 million owned cats living in

More information

Design of a High Speed Adder

Design of a High Speed Adder Design of a High Speed Adder Aritra Mitra 1, Bhavesh Sharma 2, Nilesh Didwania 3 and Amit Bakshi 4 Aritra.mitra000@gmail.com, Abakshi.ece@gmail.com Abstract In this paper we have compared different addition

More information

Effects of Three Lighting Programs During Grow on the Performance of Commercial Egg Laying Varieties

Effects of Three Lighting Programs During Grow on the Performance of Commercial Egg Laying Varieties Effects of Three Lighting Programs During Grow on the Performance of Commercial Egg Laying Varieties 2. Laying Period Egg Production J. Arango, P. Settar, S. Saxena, J. Arthur, N.P. O Sullivan Hy-Line

More information

Columnar Specificity of Intrinsic Horizontal and Corticocortical Connections in Cat Visual Cortex

Columnar Specificity of Intrinsic Horizontal and Corticocortical Connections in Cat Visual Cortex The Journal of Neuroscience, July 1989, g(7): 2432-2442 Columnar Specificity of Intrinsic Horizontal and Corticocortical Connections in Cat Visual Cortex Charles D. Gilbert and Torsten N. Wiesel The Rockefeller

More information

Design of Low Power and High Speed Carry Select Adder Using Brent Kung Adder

Design of Low Power and High Speed Carry Select Adder Using Brent Kung Adder Design of Low Power and High Speed Carry Select Adder Using Brent Kung Adder Dr.K.Srinivasulu Professor, Dept of ECE, Malla Reddy Collage of Engineering. Abstract: The binary addition is the basic arithmetic

More information

206 Adopted: 4 April 1984

206 Adopted: 4 April 1984 OECD GUIDELINE FOR TESTING OF CHEMICALS 206 Adopted: 4 April 1984 1. I N T R O D U C T O R Y I N F O R M A T I O N P r e r e q u i s i t e s Water solubility Vapour pressure Avian dietary LC50 (See Test

More information

Ergonomy in the new rabbit cages

Ergonomy in the new rabbit cages Ergonomy in the new rabbit cages Recommendations to be addressed to the E. U. Joan Ruíz Martinez Extrona. Polig. Can Mir 08232 Viladecavalls (Barcelona) Pablo Villoslada Díaz. Hospital de la Universidad

More information

The complete guide to. Puppy Growth Charts. Puppy Growth Chart. Puppy Growth Chart. Dog s Name: Dog s Name: D.O.B. Dog s Name: Neuter Date:

The complete guide to. Puppy Growth Charts. Puppy Growth Chart. Puppy Growth Chart. Dog s Name: Dog s Name: D.O.B. Dog s Name: Neuter Date: The complete guide to s 9 8.-9kg 99. th Centile. th Centile. th Centile. th Centile. nd Centile. th Centile WPGC - What are the WALTHAM s? WALTHAM s are a user-friendly clinical tool designed for veterinary

More information