Chapter 11. Human Genetic Analysis

Size: px
Start display at page:

Download "Chapter 11. Human Genetic Analysis"

Transcription

1 Chapter 11 Human Genetic Analysis

2 1. Complex inheritance of traits does not follow inheritance patterns described by Mendel. 2. Many traits result from alleles with a range of dominance, rather than a strict dominant or recessive relationship. 3. Gene expression is often related to whether a gene is located on an autosome or on a sex chromosome.

3 Codominance! When two dominant alleles are expressed at the same time, both forms of the trait are displayed.! Different from incomplete dominance because both traits are displayed.

4 Example: red flower x white flower = red and white flowered offspring equal number of red and white flowers

5 Example: Black horse x white horse = roan coat equal number of black and white hairs

6 Intermediate Traits " Incomplete dominance - an individual displays a trait that is intermediate between the two parents. Example: red flower x white flower = pink flower " Neither the red nor the white allele is completely dominant

7 Multiple Alleles! Genes with three or more alleles are said to have multiple alleles.! When traits are controlled by genes with multiple alleles, an individual can have only two of the possible alleles for that gene. Example: Blood types in humans; hair color; eye color! Three different alleles I A, I B, and i result in four different blood phenotypes A, AB, B, and O.

8 X-Linked Traits " The trait is carried by females ONLY on the X chromosome through a recessive allele. " Males will HAVE the disorder because they only have one X chromosome. " The X chromosome has many genes, some of which cause genetic disorders.

9 Traits influenced by the Environment " An individual s phenotype often depends on conditions in the environment. Example: fur color in Siamese cats # Dark fur around cooler parts of the body- ears, nose, paws, and tails. Example: skin tone in humans # Exposure to the sun alters the color of the skin.

10 Mutations " Changes in genetic material. " The harmful effects produced by inherited mutations are called genetic disorders. " Many mutations are carried by recessive alleles in heterozygous individuals. carriers

11 Genetic Counseling o Genetic counseling is a form of medical guidance that informs people about genetic problems that could affect them or their offspring.

12 1. Genetic Abnormality " Rare, uncommon version of a trait. 2. Genetic Disorder " An inherited condition that sooner or later will cause mild to severe medical problems.

13 3. Syndrome " A recognized set of symptoms that characterize a given disorder. 4. Disease " Illness caused by infectious, dietary, or environmental factors, NOT by inheritance of mutant genes.

14 Disorder Mutation Chromosome Color blindness P X Cystic fibrosis P 7q Down syndrome C 21 Hemophilia P X P Point mutation, or any insertion/deletion entirely inside one gene D Deletion of a gene or genes C Whole chromosome extra, missing, or both T Trinucleotide repeat disorders: gene is extended in length Klinefelter syndrome C X Sickle-cell disease P 11p Tay Sachs disease P 15

15 2007 Paul Billiet ODWS PEDIGREE CHARTS

16 What is a pedigree chart? " a chart of the genetic history of a family over several generations. " used to study the transmission of hereditary conditions 2007 Paul Billiet ODWS

17 Constructing a Pedigree " Female " Male

18 Connecting Pedigree Symbols " Married Couple " Children

19 Symbols used in pedigree charts " Affected " X-linked.. " Carrier " Deceased 2007 Paul Billiet ODWS

20 Symbols used in pedigree charts " Normal male " Affected male " Normal female " Affected female 2007 Paul Billiet ODWS

21 Organizing the pedigree chart " A pedigree chart of a family showing 20 individuals 2007 Paul Billiet ODWS

22 Organizing the pedigree chart # Generations are identified by Roman numerals. I II III IV 2007 Paul Billiet ODWS

23 Organising the pedigree chart " Individuals in each generation are identified by Arabic numerals numbered from the left " Therefore the affected individuals are II3, IV2 and IV3 I II III IV 2007 Paul Billiet ODWS

24 Interpreting a Pedigree Chart 1. Determine if the pedigree chart shows an autosomal or X-linked disease.! If most of the males in the pedigree are affected and the carriers are female, THEN the disorder is X-linked.! If it is a 50/50 ratio between men and women, THEN the disorder is autosomal.

25 Example 1 of Pedigree Charts $ Is it Autosomal or X-linked?

26 Answer $ Autosomal

27 2. Determine whether the disorder is dominant or recessive.! If the disorder is dominant, one of the parents must have the disorder.! If the disorder is recessive, neither parent has to have the disorder because they can be heterozygous.

28 Example 2 of Pedigree Charts $ Dominant or Recessive?

29 Answer $ Dominant

30 Example 3 of Pedigree Charts " Dominant or Recessive?

31 Answer " Recessive

32 % Several genes can influence a trait- polygenic trait. % Determining the effect of these genes is difficult. Example: A horse with red hair mates with a horse with white hair, and their offspring has both red and white hair. How can this be?

Incomplete Dominance, Co-Dominance, and Sex-linked dominance NON-MENDELIAN GENETICS

Incomplete Dominance, Co-Dominance, and Sex-linked dominance NON-MENDELIAN GENETICS Incomplete Dominance, Co-Dominance, and Sex-linked dominance NON-MENDELIAN GENETICS INCOMPLETE DOMINANCE INCOMPLETE DOMINANCE Two alleles dominant and recessive Genotypes are the same as simple Mendelian

More information

Welcome to Jeopardy! Genetics. Please get your blood typing lab out for me to check. Come up to my desk with your partner

Welcome to Jeopardy! Genetics. Please get your blood typing lab out for me to check. Come up to my desk with your partner Welcome to Jeopardy! Genetics Please get your blood typing lab out for me to check. Come up to my desk with your partner If a boy is colorblind, he inherited it from A) His mother B) His father C) Both

More information

Unit 5 Guided Notes Genetics

Unit 5 Guided Notes Genetics Gregor Mendel Modern genetics began in the mid-1800s in an abbey garden, where a monk named documented inheritance in peas Medel s Work What is inheritance: used good experimental design used analysis

More information

Genetics Since Mendel. At dog and cat shows, an animal s owner may be asked to show its pedigree. What do you think a pedigree shows?

Genetics Since Mendel. At dog and cat shows, an animal s owner may be asked to show its pedigree. What do you think a pedigree shows? chapter 35 Heredity section 2 Genetics Since Mendel Before You Read At dog and cat shows, an animal s owner may be asked to show its pedigree. What do you think a pedigree shows? What You ll Learn how

More information

8.2- Human Inheritance

8.2- Human Inheritance 8.2- Human Inheritance Sex Linked Traits Traits controlled by genes on the sex chromosome. Recessive X-linked traits are always shown in males. Males only have one X chromosome Females must inherit two

More information

DO NOT WRITE ON THIS TEST Unit 6 Assessment Genetics Objective 3.2.2

DO NOT WRITE ON THIS TEST Unit 6 Assessment Genetics Objective 3.2.2 DO NOT WRITE ON THIS TEST Unit 6 Assessment Objective 3.2.2 Vocabulary Matching + 1 point each 1. dominant 2. recessive 3. genotype 4. phenotype 5. heterozygous 6. homozygous 7. incomplete dominance 8.

More information

Notes 8.3: Types of Inheritance. How do living organisms pass traits from one generation to the next? Pages 184, 237,

Notes 8.3: Types of Inheritance. How do living organisms pass traits from one generation to the next? Pages 184, 237, Notes 8.3: Types of Inheritance How do living organisms pass traits from one generation to the next? Pages 184, 237, 242-244 Think about it You have a purple flower, you know purple is the dominate allele,

More information

a. Which members of the family above are afflicted with Huntington s disease?

a. Which members of the family above are afflicted with Huntington s disease? GROUP A 1. a. Which members of the family above are afflicted with Huntington s disease? b. There are no carriers (heterozygotes) for Huntington s Disease you either have it or you don t. with this in

More information

Step 4: All of the offspring will be rw. So the genotypic ratio is: 4 : 0 : 0 rw ww rr

Step 4: All of the offspring will be rw. So the genotypic ratio is: 4 : 0 : 0 rw ww rr Part 7: Incomplete Dominance or Codominance In Four o clock flowers the alleles for flower color are both equal therefore neither dominates over the other. We call this condition incomplete dominance or

More information

Beyond Mendel. Extending Mendelian Genetics. Incomplete Dominance. Think about this. Beyond Mendel. Chapter 12

Beyond Mendel. Extending Mendelian Genetics. Incomplete Dominance. Think about this. Beyond Mendel. Chapter 12 Beyond Mendel Extending Mendelian Genetics Chapter 12 Mendel s work did, however, provide a basis for discovering the passing of traits in other ways including: Incomplete Dominance Codominance Polygenic

More information

Monday, January 28, 13. Dominance and Multiple Allele Notes

Monday, January 28, 13. Dominance and Multiple Allele Notes Dominance and Multiple Allele Notes http://www.dobermann-review.com/info/genetics/mendels_genetic_laws/gregor%20mendel.jpg http://faculty.pnc.edu/pwilkin/incompdominance.jpg http://www.dobermann-review.com/info/genetics/mendels_genetic_laws/gregor%20mendel.jpg

More information

UNIT 6 Genes and Inheritance sciencepeek.com

UNIT 6 Genes and Inheritance sciencepeek.com Part 1 - Inheritance of Genes Name Date Period 1. Fill in the charts below on the inheritance of genes. 2. In a diploid cell, there are copies of each chromosome present. 3. Each human diploid cell has

More information

Exceptions to Mendel. Beyond Mendel. Beyond Mendel

Exceptions to Mendel. Beyond Mendel. Beyond Mendel Exceptions to Mendel Complex Patterns of Inheritance Think about this You are walking around outside and you notice a bush with two distinctly colored flowers: red and white. However, you notice a pink

More information

Genetics Extra Practice Show all work!

Genetics Extra Practice Show all work! Name: # Date: Per: Genetics Extra Practice Show all work! Monohybrids 1. A cross between two pea plants hybird for a single trait produces 60 offspring. Approximately how many of the offspring would be

More information

Non-Mendelian Genetics

Non-Mendelian Genetics Non-Mendelian Genetics Jan 3 rd Non-Mendelian Genetics Incomplete Dominance Codominance Practice handout Jan 4 th Multiple Alleles Polygenic Traits Sex-Linked Traits Jan 5 th Quiz Chromosome structure,

More information

The Human Genome. Chapter 14 Human Heredity Human Chromosomes. Factors to Consider in Pedigrees. Pedigree. Sex Chromosomes and Autosomes

The Human Genome. Chapter 14 Human Heredity Human Chromosomes. Factors to Consider in Pedigrees. Pedigree. Sex Chromosomes and Autosomes Sex Chromosomes and Autosomes The Human Genome Chapter 14 Human Heredity Human Chromosomes Two of the 46 chromosomes in humans are known as the sex chromosomes. X Chromosome Y Chromosome The remaining

More information

Heredity and Genetics Noteguide (Spring Semester)

Heredity and Genetics Noteguide (Spring Semester) Heredity and Genetics Noteguide (Spring Semester) **Your test over this unit will include all in this packet and the one from last semester.** Multiple Alleles- A set of control a trait. Example: Blood

More information

Complex Patterns of Inheritance Puzzle Stations Station #1: Multiple alleles, blood types

Complex Patterns of Inheritance Puzzle Stations Station #1: Multiple alleles, blood types Station #1: Multiple alleles, blood types (Remember, the possible multiple alleles for blood are written as I A, I B, i, with types A and B being codominant, and O being recessive.) 1. A man with blood

More information

Genetics Intervention

Genetics Intervention Genetics Intervention Vocabulary: Define the following terms on a separate piece of paper. allele autosome chromosome codominance dihybrid diploid dominant gene gamete haploid heterozygous homozygous incomplete

More information

Station 1. Using the cards, match the vocabulary word with its definition. If there are any words you do not know, write them down if you have time!

Station 1. Using the cards, match the vocabulary word with its definition. If there are any words you do not know, write them down if you have time! Station 1 Using the cards, match the vocabulary word with its definition. If there are any words you do not know, write them down if you have time! Station 2 Answer the following questions on a separate

More information

Non-Mendelian Genetics

Non-Mendelian Genetics Non-Mendelian Genetics Non-Mendelian Genetics Some traits don t follow the simple dominant/recessive rules that Mendel first applied to genetics. Some alleles are neither dominant nor recessive. Sometimes

More information

3) DEFINITIONS: multiple alleles: polygenic traits: codominance: incomplete dominance: gene: allele: homozygous: heterozygous: autosomal: sex-linked:

3) DEFINITIONS: multiple alleles: polygenic traits: codominance: incomplete dominance: gene: allele: homozygous: heterozygous: autosomal: sex-linked: WLHS / Biology / Unit 6 Genetics / Monson Name Date Per 1) Compare the processes of MITOSIS and MEIOSIS: How many daughter cells are produced? If the parent cell has 22 chromosomes, how many chromosomes

More information

AYCI: Do NOT use your notes. This fish picture is an example of codominance. IN YOUR OWN WORDS, write an explanation of codominance based on what you

AYCI: Do NOT use your notes. This fish picture is an example of codominance. IN YOUR OWN WORDS, write an explanation of codominance based on what you AYCI: Do NOT use your notes. This fish picture is an example of codominance. IN YOUR OWN WORDS, write an explanation of codominance based on what you have learned so far. RR x WW are parents. Based on

More information

Patterns of Inheritance. What are the different ways traits can be inherited?

Patterns of Inheritance. What are the different ways traits can be inherited? Patterns of Inheritance What are the different ways traits can be inherited? Review: Patterns of Inheritance we know already 1. Autosomal dominant: If an individual is heterozygous, only one allele is

More information

Chapter 11 Mendel and Punnett Squares

Chapter 11 Mendel and Punnett Squares Chapter 11 Mendel and Punnett Squares Key Vocabulary to review: Genotype Dominate Alleles Homozygous Phenotype Recessive Alleles Heterozygous What is Genetics? Who is Gregor Mendel? Why did he study pea

More information

Punnett Square Review

Punnett Square Review Punnett Square Review Complete each of the following problems to practice the 4 different types of crosses 1. In peas, yellow color (G) is dominant to green (g). What are the possible genotypes and phenotypes

More information

Next Wednesday declaration of invasive species due I will have Rubric posted tonight Paper is due in turnitin beginning of class 5/14/1

Next Wednesday declaration of invasive species due I will have Rubric posted tonight Paper is due in turnitin beginning of class 5/14/1 Next Wednesday declaration of invasive species due I will have Rubric posted tonight Paper is due in turnitin beginning of class 5/14/1 4/13. Warm-up What is the difference between mrna and trna: mrna

More information

Other Patterns of Inheritance:

Other Patterns of Inheritance: Biology Ms. Ye Name Date Block Other Patterns of Inheritance: Incomplete Dominance o One allele is not completely dominant over the other, resulting in a o Incomplete dominance is not support for the blending

More information

Sample Size Adapted from Schmidt, et al Life All Around Us.

Sample Size Adapted from Schmidt, et al Life All Around Us. Lab 9, Biol-1, C. Briggs, revised Spring 2018 Sample Size Adapted from Schmidt, et al. 2006. Life All Around Us. Name: Lab day of week: Objectives Observe the benefits of large sample sizes. Instructions

More information

Chapter 8 Heredity. Learning Target(s):

Chapter 8 Heredity. Learning Target(s): Chapter 8 Heredity copyright cmassengale 1 Learning Target(s): I Can. A) explain the differences between dominant and recessive traits. B) explain the differences between phenotypes and genotypes. 1 Why

More information

7. Describe the following with words and give an example: Heterozygous, homozygous recessive, homozygous dominant

7. Describe the following with words and give an example: Heterozygous, homozygous recessive, homozygous dominant Name: Genetics UNIT EXAM Review Below are review questions for each of the 5 learning goals we have addressed during this unit. This is the majority of the science content we covered. However, as a disclaimer

More information

Mendelian Genetics SI

Mendelian Genetics SI Name Mendelian Genetics SI Date 1. In sheep, eye color is controlled by a single gene with two alleles. When a homozygous brown-eyed sheep is crossed with a homozygous green-eyed sheep, blue-eyed offspring

More information

Science 10-Biology Activity 17 Worksheet on More Complex Genetics

Science 10-Biology Activity 17 Worksheet on More Complex Genetics Science 10-Biology Activity 17 Worksheet on More Complex Genetics 10 Name Due Date Show Me Hand In Correct and Hand In Again By NOTE: This worksheet is based on material from pages 398-404 in Science Probe.

More information

Karyotypes Pedigrees Sex-Linked Traits Genetic Disorders

Karyotypes Pedigrees Sex-Linked Traits Genetic Disorders Karyotypes Pedigrees Sex-Linked Traits Genetic Disorders Consists of 23 pairs of chromosomes. Images are taken from diploid cells during mitosis. Chromosomes 1 through 22 are called autosomes. The X and

More information

Lesson Overview. Human Chromosomes. Lesson Overview Human Chromosomes

Lesson Overview. Human Chromosomes. Lesson Overview Human Chromosomes Lesson Overview 14.1 Genome a full set of all the genetic information that an organism carries in its DNA. Karyotypes Karyotype a picture that shows the complete diploid set of human chromosomes, They

More information

1 st Type basic vocabulary and setting up Punnett Squares:

1 st Type basic vocabulary and setting up Punnett Squares: Genetics Punnett Square Review Questions Work booklet Name: There are several types of questions that involve the use of Punnett Squares in this unit. Here s the break down or summary of those problems.

More information

Today: Mendel s Technique: What Mendel Observes: Mendelian Genetics: Consider this. Mendelian Genetics and Problems (In-Class 6)

Today: Mendel s Technique: What Mendel Observes: Mendelian Genetics: Consider this. Mendelian Genetics and Problems (In-Class 6) Today: Mendelian Genetics and Problems (In-Class 6) Mendelian Genetics: Consider this. 8 million possible chromosome combinations in each egg, and each sperm = >70 trillion possibilities! How are we able

More information

Incomplete Dominance and Codominance

Incomplete Dominance and Codominance Incomplete Dominance and Codominance Name Define incomplete dominance Incomplete dominance can be remembered in the form of Red flower X white flower = pink flower The trick is to recognize when you are

More information

Genetics Practice Problems

Genetics Practice Problems Genetics Practice Problems Work out these genetic problems. The answers are provided but the most important aspect is the practice of working out the problems. Use this information for the two questions

More information

Genetics Worksheet # 1 Answers name:

Genetics Worksheet # 1 Answers name: Genetics Worksheet # 1 Answers name: Blood type inheritance is somewhat complicated, with three forms of the gene and 4 possible phenotypes. Refer to class notes for more information. 1. Suppose that a

More information

Genetics Problems. Character Dominant Recessive

Genetics Problems. Character Dominant Recessive Genetics Problems 1. A rooster with gray feathers is mated with a hen of the same phenotype. Among their offspring, 15 chicks are gray, 6 are black, and 8 are white. What is the simplest explanation for

More information

STUDYING PEDIGREES ACTIVITY

STUDYING PEDIGREES ACTIVITY *Biology Name Date Period STUDYING PEDIGREES ACTIVITY Introduction: A pedigree is a visual chart that depicts a family history or the transmission of a specific trait. They can be interesting to view and

More information

Bell Ringer. Which features do you have that match your mother? Your father? Which of the following features do you have?

Bell Ringer. Which features do you have that match your mother? Your father? Which of the following features do you have? Bell Ringer Which features do you have that match your mother? Your father? Which of the following features do you have? Widow s Peak? Ability to roll your tongue? Attached earlobes? Simple Genetics Exploring

More information

Name: Block: Date: Packet #12 Unit 6: Heredity

Name: Block: Date: Packet #12 Unit 6: Heredity Name: Block: Date: Packet #12 Unit 6: Heredity Objectives: By the conclusion of this unit, you should be able to: Topic 1: Simple Heredity 1. Define and relate the following terms: self-fertilization,

More information

Mendelian Genetics Part 4: Dihybrid Cross

Mendelian Genetics Part 4: Dihybrid Cross Mendelian Genetics Part 4: Dihybrid Cross Name Terms and Explanations Explain the following terms and concepts, using both a diagram and an explanation in sentences or statements: Monohybrid cross Meiosis

More information

Genetics #2. Polyallelic Traits. Genetics can be very complicated.

Genetics #2. Polyallelic Traits. Genetics can be very complicated. Genetics #2 Genetics can be very complicated. Polyallelic Traits When a trait is caused by more than two alleles in a population. An individual still only inherits two alleles for the trait one from each

More information

Biology 3201 Sex Linked Review Mr.Gillam Name:

Biology 3201 Sex Linked Review Mr.Gillam Name: Biology 3201 Sex Linked Review Mr.Gillam Name: A female has the chromosomes XX, while a male has the chromosomes XY. In sex-linked inheritance the genes are carried on the chromosome and as a rule and

More information

Punnett Squares Monohybrid, Di-hybrid and Sex-Linked Crosses Integrated Science 2 Name: Period: Key: Alleles: B = brown eyes b = blue eyes

Punnett Squares Monohybrid, Di-hybrid and Sex-Linked Crosses Integrated Science 2 Name: Period: Key: Alleles: B = brown eyes b = blue eyes Punnett Squares Monohybrid, Di-hybrid and Sex-Linked Crosses Integrated Science 2 Name: Period: Background Original parents in any given set of crosses are called the parent generation or parents (P1),

More information

STUDYING PEDIGREES ACTIVITY

STUDYING PEDIGREES ACTIVITY Biology Name STUDYING PEDIGREES ACTIVITY Introduction: A pedigree is a visual chart that depicts a family history or the transmission of a specific trait. They can be interesting to view and can be important

More information

Genetics Worksheet. Name

Genetics Worksheet. Name Genetics Worksheet Name Section A: Vocabulary 1. Identify if the alleles are homozygous (Ho) or heterozygous (He). a. DD b. Ee c. tt d. Hh 2. For each genotype below, determine the phenotype. a. Purple

More information

Bio 111 Study Guide Chapter 14 Genetics

Bio 111 Study Guide Chapter 14 Genetics Bio 111 Study Guide Chapter 14 Genetics BEFORE CLASS: Reading: Read the whole chapter from p. 267-288. It might also be helpful to read before class the Tips for Genetics Problems section on p.290. Definitely

More information

Sex-linked/incomplete dominance/codominance quiz

Sex-linked/incomplete dominance/codominance quiz 1. What is the difference between genotype and phenotype? a. Genotype is the physical characteristics; phenotype is the genetic make-up. b. Genotype is the genetic make-up; phenotype is the physical characteristics.

More information

Students will be able to answer their genetic questions using other inheritance patterns.

Students will be able to answer their genetic questions using other inheritance patterns. Chapter 9 Patterns of Inheritance Figure 9.0_ Chapter 9: Big Ideas Mendel s Laws Variations on Mendel s Laws PowerPoint Lectures for Campell Biology: Concepts & Connections, Seventh Edition Reece, Taylor,

More information

Understandings, Applications and Skills (This is what you maybe assessed on)

Understandings, Applications and Skills (This is what you maybe assessed on) 3. Genetics 3.4 Inheritance Name: Understandings, Applications and Skills (This is what you maybe assessed on) Statement Guidance 3.4.U1 3.4.U2 3.4.U3 3.4.U4 3.4.U5 3.4.U6 3.4.U7 3.4.U8 3.4.U9 Mendel discovered

More information

Two-Factor Crosses. All of the resulting F 1 offsrping had round yellow peas (RrYy).

Two-Factor Crosses. All of the resulting F 1 offsrping had round yellow peas (RrYy). Two-Factor Crosses Mendel also wanted to see what happens when you study the inheritance of two traits at the same time. He first crossed true-breeding plants that had smooth yellow peas (RRYY) with plants

More information

Mendelian Genetics 1

Mendelian Genetics 1 Mendelian Genetics 1 Genetic Terminology Trait - any characteristic that can be passed from parent to offspring Heredity - passing of traits from parent to offspring Genetics - study of heredity 2 Gregor

More information

STUDYING PEDIGREES ACTIVITY

STUDYING PEDIGREES ACTIVITY *Biology Name Date Period STUDYING PEDIGREES ACTIVITY Introduction: A pedigree is a visual chart that depicts a family history or the transmission of a specific trait. They can be interesting to view and

More information

Lesson Overview. Human Chromosomes. Lesson Overview Human Chromosomes

Lesson Overview. Human Chromosomes. Lesson Overview Human Chromosomes Lesson Overview 14.1 Karyotypes To find what makes us uniquely human, we have to explore the human genome. A genome is the full set of genetic information that an organism carries in its DNA. A study of

More information

SEX LINKED INHERITANCE & PEDIGREES

SEX LINKED INHERITANCE & PEDIGREES SEX LINKED INHERITANCE & PEDIGREES A DAY: 5/17 B DAY: 5/18 ONLY 2 MORE CLASSES WITH NEW CONTENT RETEACH AND RETAKE DURING FRESHMEN SEMINAR TODAY I WILL RETEACH THE MATERIAL ON THE QUIZ FROM LAST CLASS

More information

Genetics Problem Set

Genetics Problem Set AP Biology - Unit 6: Patterns of Inheritance Name: Genetics Problem Set Independent Assortment Problems 1. One gene has alleles A and a. Another has alleles B and b. For each genotype listed, what type(s)

More information

+ Karyotypes. Does it look like this in the cell?

+ Karyotypes. Does it look like this in the cell? + Human Heredity + Karyotypes A genome is the full set of genetic information that an organism carries in its DNA. Karyotype: Shows the complete diploid set of chromosomes grouped together in pairs, arranged

More information

Human Genetics. Polygenic and Sex influenced traits, Autosomal Dominant, Autosomal Recessive, and Sex-linked Disorders and Pedigrees.

Human Genetics. Polygenic and Sex influenced traits, Autosomal Dominant, Autosomal Recessive, and Sex-linked Disorders and Pedigrees. Human Genetics Polygenic and Sex influenced traits, Autosomal Dominant, Autosomal Recessive, and Sex-linked Disorders and Pedigrees Lab Biology Polygenic and Sex influenced Traits Polygenic Traits- a trait

More information

17 Inherited change Exam-style questions. AQA Biology

17 Inherited change Exam-style questions. AQA Biology 1 Two genes in a mouse interact to control three possible coat colours: grey, black and brown. The two genes are located on separate chromosomes. Each gene has two alleles: A is dominant to a and B is

More information

What is Genetics? Genetics is the scientific study of heredity

What is Genetics? Genetics is the scientific study of heredity What is Genetics? Genetics is the scientific study of heredity What is a Trait? A trait is a specific characteristic that varies from one individual to another. Examples: Brown hair, blue eyes, tall, curly

More information

Heredity. What s heredity? An organism s heredity is the set of characteristics it receives from its parents. Today, known as genetics.

Heredity. What s heredity? An organism s heredity is the set of characteristics it receives from its parents. Today, known as genetics. Heredity What s heredity? An organism s heredity is the set of characteristics it receives from its parents. Today, known as genetics. 1 Gregor Mendel Father of Genetics, whose work with pea plants led

More information

Problem 1. What is the simplest explanation for the inheritance of these colors in chickens?

Problem 1. What is the simplest explanation for the inheritance of these colors in chickens? Problem 1 A rooster with gray feathers is mated with a hen of the same phenotype. Among their offspring, 15 chicks are gray, 6 are black, and 8 are white. What is the simplest explanation for the inheritance

More information

Problem 1. What is the simplest explanation for the inheritance of these colors in chickens?

Problem 1. What is the simplest explanation for the inheritance of these colors in chickens? Problem 1 A rooster with gray feathers is mated with a hen of the same phenotype. Among their offspring, 15 chicks are gray, 6 are black, and 8 are white. What is the simplest explanation for the inheritance

More information

Simple Genetics Quiz

Simple Genetics Quiz Simple Genetics Quiz Matching: Match the terms below to their correct definition. (1 point each) 1. heterozygous 2. homozygous 3. dominant 4. recessive 5. phenotype 6. Cystic Fibrosis 7. Sickle Cell Anemia

More information

Exceptions to Mendel's Rules of Genetics

Exceptions to Mendel's Rules of Genetics Exceptions to Mendel's Rules of Genetics Mrs. Herman 2017 Mendel Genetics with a dominate and recessive trait the dominate completely masks the appearance of any other trait and there is no mixing or blending.

More information

Genetics Assignment. Name:

Genetics Assignment. Name: Genetics Assignment Name: 1. An organism is heterozygous for two pairs of genes. The number of different combinations of alleles that can form for these two genes in the organism s gametes is A. 1 B.

More information

Genes and Alleles Genes - Genes PIECE CHROMOSOME CODE TRAIT HAIR COLOUR LEFT HANDEDNESS CHARACTERISTIC GENE

Genes and Alleles Genes - Genes PIECE CHROMOSOME CODE TRAIT HAIR COLOUR LEFT HANDEDNESS CHARACTERISTIC GENE Genes and Alleles S1-1-14 Explain the inheritance of sex-linked traits in humans and use a pedigree to track the inheritance of a single trait. Examples: colour blindness, hemophilia Genes - Genes are

More information

Please keep all extra notes and practice problems neatly organized in your notebook so that may reference them as needed This information is covered

Please keep all extra notes and practice problems neatly organized in your notebook so that may reference them as needed This information is covered Please keep all extra notes and practice problems neatly organized in your notebook so that may reference them as needed This information is covered in 6.3, 6.4, 6.5 and chapter 7 of your textbook Study

More information

Mendelian Genetics Problem Set

Mendelian Genetics Problem Set Mendelian Genetics Problem Set Name: Biology 105 Principles of Biology Fall 2003 These problem sets are due at the beginning of your lab class the week of 11/10/03 Before beginning the assigned problem

More information

BEYOND MENDEL. Incomplete Dominance: Blue (BB) Red (RR) F 1 hybrids have appearance in between 2 parents Purple (BR)

BEYOND MENDEL. Incomplete Dominance: Blue (BB) Red (RR) F 1 hybrids have appearance in between 2 parents Purple (BR) AP BIOLOGY EVOLUTION/HEREDITY UNIT Unit 1 Part 4 Chapter 14 Activity #5 NAME DATE PERIOD BEYOND MENDEL INCOMPLETE DOMINANCE Incomplete Dominance: Blue (BB) Red (RR) F 1 hybrids have appearance in between

More information

MULTIPLE CHOICE QUESTIONS

MULTIPLE CHOICE QUESTIONS MULTIPLE CHOICE QUESTIONS 1. Mendel verified true-breeding pea plants for certain traits before undertaking his experiments. The term true-breeding refers to: A. genetically pure lines. B. organisms that

More information

Problem 1. What is the simplest explanation for the inheritance of these colors in chickens?

Problem 1. What is the simplest explanation for the inheritance of these colors in chickens? Problem 1 A rooster with gray feathers is mated with a hen of the same phenotype. Among their offspring, 15 chicks are gray, 6 are black, and 8 are white. What is the simplest explanation for the inheritance

More information

Different versions of a single gene are called allleles, and one can be dominant over the other(s).

Different versions of a single gene are called allleles, and one can be dominant over the other(s). Answer KEY 1 Different versions of a single gene are called allleles, and one can be dominant over the other(s). 2 Describe genotype and phenotype in your own words. A genotype is the genetic makeup of

More information

Eastern Regional High School

Eastern Regional High School Eastern Regional High School Honors iology Name: Period: Date: Unit 13 Non-Mendelian Genetics Review Packet 1. The phenotypes for 4 o clock flowers are white, red, and pink. Cross a purebred red flower

More information

Biology 100. ALE #8. Mendelian Genetics and Inheritance Practice Problems

Biology 100. ALE #8. Mendelian Genetics and Inheritance Practice Problems Biology 100 Instructor: K. Marr Name Lab Section Group No. Quarter ALE #8. Mendelian Genetics and Inheritance Practice Problems Answer the following questions neatly and fully in the spaces provided. References:

More information

A Little Genetics Review

A Little Genetics Review A Little Genetics Review 1. A pink elephant is mated with a blue one and all the offspring are pink with blue spots! This is an example of A. normal inheritance B. codominance C. incomplete domiance D.

More information

HEREDITY HOW YOU BECAME YOU!

HEREDITY HOW YOU BECAME YOU! HEREDITY HOW YOU BECAME YOU! ESSENTIAL QUESTIONS Why do individuals of the same species vary in how they look, function and behave? WHY DO INDIVIDUALS OF THE SAME SPECIES VARY IN HOW THEY LOOK, FUNCTION

More information

Practice Study Guide Genetics:

Practice Study Guide Genetics: Name: Period: Date: Practice Study Guide Genetics: Solve the following questions: Problem 1: a. What is the most likely mode of inheritance for this pedigree? Why? Problem 2: Assume that the individual

More information

If you take the time to follow the directions below, you will be able to solve most genetics problems.

If you take the time to follow the directions below, you will be able to solve most genetics problems. Genetics Worksheet Part 1 Introduction: 1. Describe the genotypes given (use your notes). The first two are already done. A. DD homozygous, dominant D. ss B. Dd _heterozygous E. Yy C. dd F. WW 2. In humans,

More information

Here are some ground rules that you should ALWAYS follow when tackling an Inheritance Problem:

Here are some ground rules that you should ALWAYS follow when tackling an Inheritance Problem: E p is od e T h r e e : N o n - M ed ellian Inheritance Here are some ground rules that you should ALWAYS follow when tackling an Inheritance Problem: 1. Define the Alleles in question - you must state

More information

Complex Patterns of Inheritance. Reading Preview. Incomplete Dominance. Codominance. Essential Questions

Complex Patterns of Inheritance. Reading Preview. Incomplete Dominance. Codominance. Essential Questions Complex Patterns of Inheritance Complex inheritance of traits does not follow inheritance patterns described by Mendel. Real-World Reading Link Imagine that you have red-green color blindness. In bright

More information

Homework Packet. Interactive Notebook. Unit Assessments. Exam-Genetics 100. Lab-Baby Reebops 25. Project: Genetic Disorders Planner 35

Homework Packet. Interactive Notebook. Unit Assessments. Exam-Genetics 100. Lab-Baby Reebops 25. Project: Genetic Disorders Planner 35 NAME PERIOD Points Homework Packet Principles of Heredity 2 Chromosome Mapping 2 Probability and Activities (#1-11) 2 Simple Genetics Problem (#12-15) 2 Practice Crosses (#16-24) 2 Dihybrid: You Try Problems

More information

The Dihybrid Problem Solve

The Dihybrid Problem Solve DIHYBRID CROSSES (MENDELIAN) Amoeba Sisters Video Recap: Dihybrid Crosses (Mendelian Inheritance) Vocabulary practice! You probably have had enough of cats with our video. On to peas! In pea plants, yellow

More information

GENETICS PRACTICE 1: BASIC MENDELIAN GENETICS

GENETICS PRACTICE 1: BASIC MENDELIAN GENETICS Period Date GENETICS PRACTICE 1: BASIC MENDELIAN GENETICS Solve these genetics problems. Be sure to complete the Punnett square to show how you derived your solution. 1. In humans the allele for albinism

More information

Genetics. What s Genetics? An organism s heredity is the set of characteristics it receives from its parents.

Genetics. What s Genetics? An organism s heredity is the set of characteristics it receives from its parents. Genetics Why don t you look exactly like your parents? Pull How are traits passed to the next generation? Pull What s Genetics? An organism s heredity is the set of characteristics it receives from its

More information

Analyzing Inheritance of Traits Using Punnett Squares and Pedigrees

Analyzing Inheritance of Traits Using Punnett Squares and Pedigrees Name: Analyzing Inheritance of Traits Using Punnett Squares and Pedigrees Part I: Genetics Vocaulary Use the word ank to complete the sentences elow. 1. is the physical, oservale trait that a person exhiits

More information

Station 1 Background Information: Punnett Square Problem: Questions:

Station 1 Background Information: Punnett Square Problem: Questions: Station 1 Farmers wanting certain traits in their crops or animals have used selective breeding. With selective breeding, farmers would choose individuals with the desirable traits and cross them (allow

More information

AP Biology Genetics Practice Alternative Modes of Inheritance

AP Biology Genetics Practice Alternative Modes of Inheritance AP Biology Genetics Practice Alternative Modes of Inheritance Name: Blk: Please put all answers on a separate sheet of paper and SHOW ALL WORK! 1. In snapdragons red flower color (R) is incompletely dominant

More information

NON MENDELIAN INHERITANCE PART III

NON MENDELIAN INHERITANCE PART III NON MENDELIAN INHERITANCE PART III Lethal Genes French geneticist Lucien Cuenot, experimentaly crosses on coat colour in mice, found a gene that was not consistent with mendelian predictions. Observations,

More information

Level 2 Biology, 2015

Level 2 Biology, 2015 91157 911570 2SUPERVISOR S Level 2 Biology, 2015 91157 Demonstrate understanding of genetic variation and change 9.30 a.m. Monday 16 November 2015 Credits: Four Achievement Achievement with Merit Achievement

More information

HEREDITY BEYOND MENDEL INCOMPLETE DOMINANCE CODOMINANCE: Heredity Activity #3 page 1

HEREDITY BEYOND MENDEL INCOMPLETE DOMINANCE CODOMINANCE: Heredity Activity #3 page 1 AP BIOLOGY HEREDITY ACTIVITY #3 NAME DATE HOUR BEYOND MENDEL INCOMPLETE DOMINANCE CODOMINANCE: Heredity Activity #3 page 1 ABO BLOOD GROUPS Blood Type A B AB O Genotype RBC Antigen Plasma Antibodies In

More information

Punnett square practice Honors KEY

Punnett square practice Honors KEY Punnett square practice Honors KEY 1) Yellow seeds are dominant over recessive green seeds. Cross a homozygous dominant yellow seeded-plant with a green-seeded plant. What are the odds of getting a plant

More information

Punnett Squares. and Pedigrees. How are patterns of inheritance studied? Lesson ESSENTIAL QUESTION. J S7L3.b Reproduction and genetic variation

Punnett Squares. and Pedigrees. How are patterns of inheritance studied? Lesson ESSENTIAL QUESTION. J S7L3.b Reproduction and genetic variation Lesson 5 Punnett Squares and Pedigrees ESSENTIAL QUESTION How are patterns of inheritance studied? By the end of this lesson, you should be able to explain how patterns of heredity can be predicted by

More information

Page 2. Explain what is meant by codominant alleles (1) Male cats with a tortoiseshell phenotype do not usually occur. Explain why. ...

Page 2. Explain what is meant by codominant alleles (1) Male cats with a tortoiseshell phenotype do not usually occur. Explain why. ... Q1.In cats, males are XY and females are XX. A gene on the X chromosome controls fur colour in cats. The allele G codes for ginger fur and the allele B codes for black fur. These alleles are codominant.

More information

Sex-linked Inheritance

Sex-linked Inheritance Sex-linked Inheritance Some Review: Autosomes: Non-sex chromosomes (#1-22 homologous pairs) Sex Chromosomes: Chromosome pair #23 Female XX Male X Sex Inheritance Gametes X X X XX XX X X Sex-linkage Trait

More information

Chromosome Theory of Inheritance

Chromosome Theory of Inheritance Page 1 of 5 Chromosome Theory of Inheritance Proposed by: Walter Sutton and Thoeodor Boveri. (1902) What they did Studied chromosomes during the various phases of meiosis. What they found Chromosomes occur

More information