Genetics Lab #4: Review of Mendelian Genetics

Size: px
Start display at page:

Download "Genetics Lab #4: Review of Mendelian Genetics"

Transcription

1 Genetics Lab #4: Review of Mendelian Genetics Objectives In today s lab you will explore some of the simpler principles of Mendelian genetics using a computer program called CATLAB. By the end of this lab you should be able to demonstrate and interpret the products of monohybrid and dihybrid crosses, design crosses to identify dominant and recessive traits and design crosses to identify the genotype of individuals bearing a dominant trait. Introduction: The genetic cross, or mating, is the bread-and-butter technique of genetic analysis. Mendel derived his particulate theory of inheritance from many crosses involving pea plants. To this day, in thousands of laboratories throughout the world, genetic crosses of experimental organisms are still carried out on a daily basis to test hypotheses of gene inheritance and function. In today s lab you will use a computer program called CATLAB to simulate genetic crosses of cats in a variety of experimental contexts. You will be approaching genetic analysis the way real geneticists do: you will only be able to see phenotypes but, through selected crosses, you will be able to draw conclusions about genotypes. Opening up CATLAB 1. Click on the CATLAB icon. 2. Click OK on the title screen. This will display the simulation screen and the program s controls. 3. Note the tabs labled Instructions, Introduction, Usage and Phenotype. Click on and read each to familiarize yourself with CATLAB. 4. Note the menu bar across the top, left of the screen. It consists of File, Cat and Options. You will be working primarily in the Cat menu. The Cat menu includes: Add - this allows you to create a cat with desired characteristics. Set as Parent - this allows you to select a particular cat as a parent. Set Litter Size - allows you to control litter size from 4 to 7. Mate Cats - Produces a litter from the selected parents. Display Phenotype - This shows you the phenotype of any selected.

2 Exercise #1: Single Gene Inheritance (monohybrid cross) In cats, one gene controls the density (or intensity) of fur color. The different alleles of this gene produce phenotypes in which the color is dense (black fur will be the example of dense coloring used in this simulation) or dilute (gray fur will be the example of dilute coloring used in this simulation). The purpose of this exercise is to explore the inheritance of this gene. The alleles for color density are: D for dense fur (black fur in this case) d for dilute fur (gray fur in this case) Based on these symbols, which is the dominant trait and which is the recessive trait? The P1 cross: Generate black and gray cats as follows: First click on add under the cat menu. 1. Black female (click on: female, has a tail, not all-white, no white areas, no tabby stripes, black) 2. Gray male (click on: male, has a tail, not all-white, no white areas, no tabby stripes, gray) Check the phenotype: First select a cat by clicking on the cat s number. Then click on Display Phenotype under the Cat menu. What are the possible genotypes for the black cat? What are the possible genotypes for the gray cat? Make a prediction: What kinds of kittens do you expect to get from these parents? Test Your Prediction: Select each cat as a parent. Set the litter size to a constant value of 5. Test your prediction by mating cat #1 and cat #2. Obtain three litters (15 kittens total). This is your F1 generation. Record their colors in the space below:

3 Analyzing Your Results Based on your results, what do you think the genotype of your black female is? Can you be certain about this conclusion? All gray kittens from this mating are genotype: All black kittens from this mating are genotype: The F1 x F1 cross: Select a black female and a black male from the group of 15 kittens as your new parents. Re-set the litter size to 6. DO NOT MATE THEM YET. Record the genotype of the new mother and the new father. The mother will produce eggs with allele: or. The father will produce sperm with allele: or. Make a prediction: Predict the possible genotypes and the phenotypic ratio among the offspring of these two cats. Use a Punnett square to make your predictions. Write out all possible genotypes and the corresponding phenotypes. Test Your Prediction: Set the litter size to a constant value of 6. Test your prediction by mating your two new parents. Obtain four litters (24 kittens total). Record your results in the following table. Color Observed number Black Gray Do your results fit your prediction? Why might your results differ from your prediction?

4 Exercise #2: Determining Genotype In this exercise you will generate three new black cats (follow the instructions for making black cats provided above). The computer program will randomly assign genotypes to each cat. Since black is dominant, the cats will be either DD or Dd. Your mission, should you choose to accept it, is to identify the genotype of each cat. Before you start, decide on a strategy for solving this problem. Cat Genotype Describe your strategy and present the results of an experiment that identified a cat with the DD genotype and the results of an experiment that identified a cat with the Dd genotype. Exercise #3: Dihybrid cross Some breeding experiments require that the experimenter follow more than one trait in a cross. A dihybrid cross involves analyzing the inheritance of two traits. In this exercise you will follow the inheritance of the color density gene and the tabby striping pattern. These genes are located on non-homologous chromosomes (i.e., they are unlinked) and will therefore obey Mendel s law of independent assortment. The alleles for color density D for dense fur (orange fur in this case) d for dilute fur (cream fur in this case) The alleles for tabby striping T for mackerel striping t for blotched striping 1. Generate an orange/mackerel cat and a cream/blotched cat. These cats will be your P1 generation. To make the cats, select the following: Male or Female (choose one) Has a tail Not all-white No white areas Blotched or Mackerel (choose one) Orange or Cream (choose appropriate color) Once you generate your cats, check their phenotype. Note the difference in the striping pattern between blotched and mackerel. What is the genotype of each cat?

5 2. Mate the two cats to get an F1 litter. Keep mating these original parents until you get at least two orange/mackerel cats in the F1 generation. 3. Select two orange/mackerel cats from the F1 generation as parents. DO NOT MATE THEM YET. Answer the following questions. What is the genotype of orange/mackerel cats in the F1 generation? What is the genotype of the gametes produced by the F1 orange/mackerel kitten? In the space below, use the Forkline method to predict the F2 genotypes. What is the predicted ratio of phenotypes among the F2? If the F1 cats produced 50 kittens, how many of each phenotypic class do expect to get? (round to whole numbers) Diagram the Forkline for the Dihybrid cross in the space below 4. Set the litter size to 7. Mate the F1 cats and produce 7 litters (a total of 49 kittens in the F2 generation). Note the number of kittens with each phenotype. Do these numbers agree with your predictions? orange/mackerel orange/blotched cream/mackerel cream/blotched

6

Genetics Lab #4: Review of Mendelian Genetics

Genetics Lab #4: Review of Mendelian Genetics Genetics Lab #4: Review of Mendelian Genetics Objectives In today s lab you will explore some of the simpler principles of Mendelian genetics using a computer program called CATLAB. By the end of this

More information

No tail (Manx) is a dominant trait and its allele is represented by M The presence of a tail is recessive and its allele is represented by m

No tail (Manx) is a dominant trait and its allele is represented by M The presence of a tail is recessive and its allele is represented by m Lab #4: Extensions to Mendelian Genetics Exercise #1 In this exercise you will be working with the Manx phenotype. This phenotype involves the presence or absence of a tail. The Manx phenotype is controlled

More information

Biology 164 Laboratory

Biology 164 Laboratory Biology 164 Laboratory CATLAB: Computer Model for Inheritance of Coat and Tail Characteristics in Domestic Cats (Based on simulation developed by Judith Kinnear, University of Sydney, NSW, Australia) Introduction

More information

3. Complete the Punnett square for heterozygous yellow (yellow is dominant): What is the genotype: and what is the phenotype:

3. Complete the Punnett square for heterozygous yellow (yellow is dominant): What is the genotype: and what is the phenotype: Name: Period: Video Review: Two Factor Crosses & Independent Assortment: 1. Mendel discovered many things about the characteristics of pea plants including the qualities of the peas themselves. What two

More information

Seed color is either. that Studies Heredity. = Any Characteristic that can be passed from parents to offspring

Seed color is either. that Studies Heredity. = Any Characteristic that can be passed from parents to offspring Class Notes Genetic Definitions Trait = Any Characteristic that can be passed from parents to offspring Heredity The passing of traits from parent to offspring - Blood Type - Color of our Hair - Round

More information

9-2 Probability and Punnett. Squares Probability and Punnett Squares. Slide 1 of 21. Copyright Pearson Prentice Hall

9-2 Probability and Punnett. Squares Probability and Punnett Squares. Slide 1 of 21. Copyright Pearson Prentice Hall 9-2 Probability and Punnett 11-2 Probability and Punnett Squares Squares 1 of 21 11-2 Probability and Punnett Squares Genetics and Probability How do geneticists use the principles of probability? 2 of

More information

Different versions of a single gene are called allleles, and one can be dominant over the other(s).

Different versions of a single gene are called allleles, and one can be dominant over the other(s). Answer KEY 1 Different versions of a single gene are called allleles, and one can be dominant over the other(s). 2 Describe genotype and phenotype in your own words. A genotype is the genetic makeup of

More information

Fruit Fly Exercise 2 - Level 2

Fruit Fly Exercise 2 - Level 2 Fruit Fly Exercise 2 - Level 2 Description of In this exercise you will use, a software tool that simulates mating experiments, to analyze the nature and mode of inheritance of specific genetic traits.

More information

Genetics and Probability

Genetics and Probability Genetics and Probability Genetics and Probability The likelihood that a particular event will occur is called probability. The principles of probability can be used to predict the outcomes of genetic crosses.

More information

Virtual Lab: Sex-Linked Traits Worksheet. 1. Please make sure you have read through all of the information in the

Virtual Lab: Sex-Linked Traits Worksheet. 1. Please make sure you have read through all of the information in the Virtual Lab: Sex-Linked Traits Worksheet 1. Please make sure you have read through all of the information in the Questions and Information areas. If you come upon terms that are unfamiliar to you, please

More information

Patterns of heredity can be predicted.

Patterns of heredity can be predicted. Page of 6 KEY CONCEPT Patterns of heredity can be predicted. BEFORE, you learned Genes are passed from parents to offspring Offspring inherit genes in predictable patterns NOW, you will learn How Punnett

More information

We are learning to analyze data to solve basic genetic problems

We are learning to analyze data to solve basic genetic problems Gene 3 We are learning to analyze data to solve basic genetic problems Success Criteria: I can - use Punnett squares to solve basic genetic problems involving monohybrid crosses, incomplete dominance,

More information

Chapter 11 Mendel and Punnett Squares

Chapter 11 Mendel and Punnett Squares Chapter 11 Mendel and Punnett Squares Key Vocabulary to review: Genotype Dominate Alleles Homozygous Phenotype Recessive Alleles Heterozygous What is Genetics? Who is Gregor Mendel? Why did he study pea

More information

Chapter 11-2 Probability and Punnett Squares Notes

Chapter 11-2 Probability and Punnett Squares Notes Chapter 11-2 Probability and Punnett Squares Notes Every time Mendel performed a cross with his pea plants, he carefully counted the offspring (over 20,000 plants) his why he noticed there was a pattern!

More information

Today: Mendel s Technique: What Mendel Observes: Mendelian Genetics: Consider this. Mendelian Genetics and Problems (In-Class 6)

Today: Mendel s Technique: What Mendel Observes: Mendelian Genetics: Consider this. Mendelian Genetics and Problems (In-Class 6) Today: Mendelian Genetics and Problems (In-Class 6) Mendelian Genetics: Consider this. 8 million possible chromosome combinations in each egg, and each sperm = >70 trillion possibilities! How are we able

More information

The purpose of this lab was to examine inheritance patters in cats through a

The purpose of this lab was to examine inheritance patters in cats through a Abstract The purpose of this lab was to examine inheritance patters in cats through a computer program called Catlab. Two specific questions were asked. What is the inheritance mechanism for a black verses

More information

Part One: Introduction to Pedigree teaches students how to use Pedigree tools to create and analyze pedigrees.

Part One: Introduction to Pedigree teaches students how to use Pedigree tools to create and analyze pedigrees. Genetics Monohybrid Teacher s Guide 1.0 Summary The Monohybrid activity is the fifth core activity to be completed after Mutations. This activity contains four sections and the suggested time to complete

More information

Cow Exercise 1 Answer Key

Cow Exercise 1 Answer Key Name Cow Exercise 1 Key Goal In this exercise, you will use StarGenetics, a software tool that simulates mating experiments, to analyze the nature and mode of inheritance of specific genetic traits. Learning

More information

Genetics. What s Genetics? An organism s heredity is the set of characteristics it receives from its parents.

Genetics. What s Genetics? An organism s heredity is the set of characteristics it receives from its parents. Genetics Why don t you look exactly like your parents? Pull How are traits passed to the next generation? Pull What s Genetics? An organism s heredity is the set of characteristics it receives from its

More information

Cross Application Problems

Cross Application Problems Cross Application Problems Name: Period: Objective: To practice solving genetics problems by setting up both monohybrid and dihybrid crosses. Part I Genotypes and Phenotypes: 1. How many traits are investigated

More information

Student Exploration: Mouse Genetics (One Trait)

Student Exploration: Mouse Genetics (One Trait) Name: Date: Student Exploration: Mouse Genetics (One Trait) Vocabulary: allele, DNA, dominant allele, gene, genotype, heredity, heterozygous, homozygous, hybrid, inheritance, phenotype, Punnett square,

More information

Mendel s Laws: Their Application to Solving Genetics Problem

Mendel s Laws: Their Application to Solving Genetics Problem Solving Genetics Problems Page 1 Mendel s Laws: Their Application to Solving Genetics Problem Objectives This lab activity is designed to teach students how to solve classic genetics problems using Mendel

More information

Heredity. What s heredity? An organism s heredity is the set of characteristics it receives from its parents. Today, known as genetics.

Heredity. What s heredity? An organism s heredity is the set of characteristics it receives from its parents. Today, known as genetics. Heredity What s heredity? An organism s heredity is the set of characteristics it receives from its parents. Today, known as genetics. 1 Gregor Mendel Father of Genetics, whose work with pea plants led

More information

Here are some ground rules that you should ALWAYS follow when tackling an Inheritance Problem:

Here are some ground rules that you should ALWAYS follow when tackling an Inheritance Problem: E p is od e T h r e e : N o n - M ed ellian Inheritance Here are some ground rules that you should ALWAYS follow when tackling an Inheritance Problem: 1. Define the Alleles in question - you must state

More information

Name period date assigned date due date returned. The Genetics of Garden Peas

Name period date assigned date due date returned. The Genetics of Garden Peas Name period date assigned date due date returned ollow instructions 1-4. ross 1. Place the parents genotypes in the Punnett Square and fill in the offspring s genotypes. Parent 2 Parent 1 Genotype Results

More information

Genetics Problem Set

Genetics Problem Set AP Biology - Unit 6: Patterns of Inheritance Name: Genetics Problem Set Independent Assortment Problems 1. One gene has alleles A and a. Another has alleles B and b. For each genotype listed, what type(s)

More information

6. Show the cross for one heterozygous short hair cat and a long haired cat. What percentage of the offspring will have short hair?

6. Show the cross for one heterozygous short hair cat and a long haired cat. What percentage of the offspring will have short hair? Biology Ms. Ye Do Now: Genetics and Probability 1. What is a genotype? Name Date Block 2. What is a Phenotype? For each genotype, indicate whether it is heterozygous (Het) or homozygous (Hom) AA EE Ii

More information

Station 1. Using the cards, match the vocabulary word with its definition. If there are any words you do not know, write them down if you have time!

Station 1. Using the cards, match the vocabulary word with its definition. If there are any words you do not know, write them down if you have time! Station 1 Using the cards, match the vocabulary word with its definition. If there are any words you do not know, write them down if you have time! Station 2 Answer the following questions on a separate

More information

Genetics Intervention

Genetics Intervention Genetics Intervention Vocabulary: Define the following terms on a separate piece of paper. allele autosome chromosome codominance dihybrid diploid dominant gene gamete haploid heterozygous homozygous incomplete

More information

Online Heredity Lab. 5. Explain how a trait can disappear and then reappear in later generations.

Online Heredity Lab. 5. Explain how a trait can disappear and then reappear in later generations. Name: Online Heredity Lab Period Mendel and his Peas Mendel Animation 1. What fundamental questions did Mendel try to answer? 2. What does Homozygous mean? 3. What is a Gamete? 4. What is a Phenotype?

More information

6. Show the cross for one heterozygous short hair cat and a long haired cat. What percentage of the offspring will have short hair?

6. Show the cross for one heterozygous short hair cat and a long haired cat. What percentage of the offspring will have short hair? Biology Ms. Ye Do Now: Genetics and Probability 1. What is a genotype? Name Date Block 2. What is a Phenotype? For each genotype, indicate whether it is heterozygous (Het) or homozygous (Hom) AA EE Ii

More information

Name period date assigned date due date returned. The Genetics of Garden Peas

Name period date assigned date due date returned. The Genetics of Garden Peas Name period date assigned date due date returned Follow instructions 1-4. ross 1. Place the parents genotypes in the Punnett Square and fill in the offspring s genotypes. Results of ross Was parent 1 homozygous

More information

TUTORIAL: Dihybrid Crosses: Crosses that involve 2 traits. Name:

TUTORIAL: Dihybrid Crosses: Crosses that involve 2 traits. Name: TUTORIAL: Dihybrid Crosses: Crosses that involve 2 traits. Name: These types of crosses can be challenging to set up, and the square you create will be 4x4. This simple guide will walk you through the

More information

Monohybrid Cross Video Review

Monohybrid Cross Video Review Name: Period: Monohybrid Cross Video Review 1. What is the name of the little boxes used in order to predict offspring without having to breed? 2. Define Punnett Square: 3. Define a monohybrid cross: 4.

More information

HEREDITARY STUDENT PACKET # 5

HEREDITARY STUDENT PACKET # 5 HEREDITARY STUDENT PACKET # 5 Name: Date: Big Idea 16: Heredity and Reproduction Benchmark: SC.7.L.16.1: Understand and explain that every organism requires a set of instructions that specifies its traits,

More information

MULTIPLE CHOICE QUESTIONS

MULTIPLE CHOICE QUESTIONS MULTIPLE CHOICE QUESTIONS 1. Mendel verified true-breeding pea plants for certain traits before undertaking his experiments. The term true-breeding refers to: A. genetically pure lines. B. organisms that

More information

Blue is the New Black How genes can influence appearance.

Blue is the New Black How genes can influence appearance. Blue is the New Black How genes can influence appearance. Backstory Humans have selectively bred plants and animals for thousands of years in order to create variations most useful to our purposes. This

More information

GENETICS PRACTICE 1: BASIC MENDELIAN GENETICS

GENETICS PRACTICE 1: BASIC MENDELIAN GENETICS Period Date GENETICS PRACTICE 1: BASIC MENDELIAN GENETICS Solve these genetics problems. Be sure to complete the Punnett square to show how you derived your solution. 1. In humans the allele for albinism

More information

Mendel s Laws of Inheritance

Mendel s Laws of Inheritance Mendel s Laws of Inheritance From his work on the inheritance of phenotypic traits in peas, Mendel formulated a number of ideas about the inheritance of characters. These were later given formal recognition

More information

Science 10-Biology Activity 17 Worksheet on More Complex Genetics

Science 10-Biology Activity 17 Worksheet on More Complex Genetics Science 10-Biology Activity 17 Worksheet on More Complex Genetics 10 Name Due Date Show Me Hand In Correct and Hand In Again By NOTE: This worksheet is based on material from pages 398-404 in Science Probe.

More information

Mendelian Genetics SI

Mendelian Genetics SI Name Mendelian Genetics SI Date 1. In sheep, eye color is controlled by a single gene with two alleles. When a homozygous brown-eyed sheep is crossed with a homozygous green-eyed sheep, blue-eyed offspring

More information

The Dihybrid Problem Solve

The Dihybrid Problem Solve DIHYBRID CROSSES (MENDELIAN) Amoeba Sisters Video Recap: Dihybrid Crosses (Mendelian Inheritance) Vocabulary practice! You probably have had enough of cats with our video. On to peas! In pea plants, yellow

More information

Biology 100. ALE #8. Mendelian Genetics and Inheritance Practice Problems

Biology 100. ALE #8. Mendelian Genetics and Inheritance Practice Problems Biology 100 Instructor: K. Marr Name Lab Section Group No. Quarter ALE #8. Mendelian Genetics and Inheritance Practice Problems Answer the following questions neatly and fully in the spaces provided. References:

More information

Bio 111 Study Guide Chapter 14 Genetics

Bio 111 Study Guide Chapter 14 Genetics Bio 111 Study Guide Chapter 14 Genetics BEFORE CLASS: Reading: Read the whole chapter from p. 267-288. It might also be helpful to read before class the Tips for Genetics Problems section on p.290. Definitely

More information

What is Genetics? Genetics is the scientific study of heredity

What is Genetics? Genetics is the scientific study of heredity What is Genetics? Genetics is the scientific study of heredity What is a Trait? A trait is a specific characteristic that varies from one individual to another. Examples: Brown hair, blue eyes, tall, curly

More information

AS91157 Demonstrate understanding of genetic variation and change. Punnett Squares

AS91157 Demonstrate understanding of genetic variation and change. Punnett Squares AS91157 Demonstrate understanding of genetic variation and change (2017,1) PIGEON GENETICS Punnett Squares Pigeon wing pattern and leg feathering both show complete dominance. The bar wing allele (B) is

More information

Furry Family Genetics

Furry Family Genetics Furry Family Genetics Name: Period: Directions: Log on to http://vital.cs.ohiou.edu/steamwebsite/downloads/furryfamily.swf and complete your Furry Family. In the tables provided, list the genotypes and

More information

Name: Block: Date: Packet #12 Unit 6: Heredity

Name: Block: Date: Packet #12 Unit 6: Heredity Name: Block: Date: Packet #12 Unit 6: Heredity Objectives: By the conclusion of this unit, you should be able to: Topic 1: Simple Heredity 1. Define and relate the following terms: self-fertilization,

More information

PIGEONETICS LAB PART 1

PIGEONETICS LAB PART 1 PIGEONETICS LAB PART 1 Name: Period: Date: This activity will challenge you to use what you ve learned about Mendelian Traits, Punnett Squares, and Sex-Linkage, as well as some new types of complex inheritance,

More information

Genetics & Punnett Square Notes

Genetics & Punnett Square Notes Genetics & Punnett Square Notes Essential Question What is Genetics and how are punnett squares used? History of Genetics Gregor Mendel Father of modern genetics Studied pea plants Found that plants that

More information

UNIT 6 Genes and Inheritance sciencepeek.com

UNIT 6 Genes and Inheritance sciencepeek.com Part 1 - Inheritance of Genes Name Date Period 1. Fill in the charts below on the inheritance of genes. 2. In a diploid cell, there are copies of each chromosome present. 3. Each human diploid cell has

More information

Name Period G eni G ames Worksheet Packet 1

Name Period G eni G ames Worksheet Packet 1 Name Period GeniGames Worksheet Packet 1 Determining Differences Different variations of traits exist. Some of them are more common than others. Working in groups tally the number of students that have

More information

Genetics Practice Problems. 1. For each genotype, indicate whether it is heterozygous (HE) or homozygous (HO) AA Bb Cc Dd.

Genetics Practice Problems. 1. For each genotype, indicate whether it is heterozygous (HE) or homozygous (HO) AA Bb Cc Dd. Name Period Genetics Practice Problems 1. For each genotype, indicate whether it is heterozygous (HE) or homozygous (HO) AA Bb Cc Dd Ee ff GG HH Ii Jj kk Ll Mm nn OO Pp 2. For each of the genotypes below,

More information

Two-Factor Crosses. All of the resulting F 1 offsrping had round yellow peas (RrYy).

Two-Factor Crosses. All of the resulting F 1 offsrping had round yellow peas (RrYy). Two-Factor Crosses Mendel also wanted to see what happens when you study the inheritance of two traits at the same time. He first crossed true-breeding plants that had smooth yellow peas (RRYY) with plants

More information

Mendelian Genetics Problem Set

Mendelian Genetics Problem Set Mendelian Genetics Problem Set Name: Biology 105 Principles of Biology Fall 2003 These problem sets are due at the beginning of your lab class the week of 11/10/03 Before beginning the assigned problem

More information

If you take the time to follow the directions below, you will be able to solve most genetics problems.

If you take the time to follow the directions below, you will be able to solve most genetics problems. Genetics Worksheet Part 1 Introduction: 1. Describe the genotypes given (use your notes). The first two are already done. A. DD homozygous, dominant D. ss B. Dd _heterozygous E. Yy C. dd F. WW 2. In humans,

More information

Understanding how our genes are passed down And how to calculate the probabilities of our traits.

Understanding how our genes are passed down And how to calculate the probabilities of our traits. Calculating the probability of our genetics Understanding how our genes are passed down And how to calculate the probabilities of our traits. Leading questions: 1. What do Punnett Squares mean? 2. How

More information

Unit 3: DNA and Genetics Module 8: Genetics

Unit 3: DNA and Genetics Module 8: Genetics Unit 3: DNA and Genetics Module 8: Genetics NC Essential Standard: 3.2.2 Predict offspring ratios based on a variety of inheritance patterns 3.2.3 Explain how the environment can influence expression of

More information

Virtual Genetics Lab (VGL)

Virtual Genetics Lab (VGL) Virtual Genetics Lab (VGL) Experimental Objective I. To use your knowledge of genetics to design and interpret crosses to figure out which allele of a gene has a dominant phenotype and which has a recessive

More information

SBI3U: Exploring Modes of Inheritance. Purpose

SBI3U: Exploring Modes of Inheritance. Purpose SBI3U: Exploring Modes of Inheritance Assigned: Purpose Name: Due: To master understanding of various modes of inheritance by creating original creatures with various traits that are passed on by each

More information

17 Inherited change Exam-style questions. AQA Biology

17 Inherited change Exam-style questions. AQA Biology 1 Two genes in a mouse interact to control three possible coat colours: grey, black and brown. The two genes are located on separate chromosomes. Each gene has two alleles: A is dominant to a and B is

More information

TOPIC 8: PUNNETT SQUARES

TOPIC 8: PUNNETT SQUARES Page 1 TOPIC 8: PUNNETT SQUARES PUNNETT SQUARES 8.1: Definition A Punnett square is a device to help you predict the possible genotypes of the offspring if you know the genotypes of the parents. Because

More information

Mendelian Genetics 1

Mendelian Genetics 1 Mendelian Genetics 1 Genetic Terminology Trait - any characteristic that can be passed from parent to offspring Heredity - passing of traits from parent to offspring Genetics - study of heredity 2 Gregor

More information

Biology 201 (Genetics) Exam #1 120 points 22 September 2006

Biology 201 (Genetics) Exam #1 120 points 22 September 2006 Name KEY Section Biology 201 (Genetics) Exam #1 120 points 22 September 2006 Read the question carefully before answering. Think before you write. You will have up to 50 minutes to take this exam. After

More information

HEREDITY HOW YOU BECAME YOU!

HEREDITY HOW YOU BECAME YOU! HEREDITY HOW YOU BECAME YOU! ESSENTIAL QUESTIONS Why do individuals of the same species vary in how they look, function and behave? WHY DO INDIVIDUALS OF THE SAME SPECIES VARY IN HOW THEY LOOK, FUNCTION

More information

Name: Period: Student Exploration: Mouse Genetics (One Trait)

Name: Period: Student Exploration: Mouse Genetics (One Trait) Directions: 1) Go to Explorelearning.com; 2) Login using your assigned user name and password. USER NAME: 1C772 PASSWORD: RAIN515 3) Find the MOUSE GENETICS ONE TRAIT Gizmo and click Launch Gizmo Name:

More information

3) DEFINITIONS: multiple alleles: polygenic traits: codominance: incomplete dominance: gene: allele: homozygous: heterozygous: autosomal: sex-linked:

3) DEFINITIONS: multiple alleles: polygenic traits: codominance: incomplete dominance: gene: allele: homozygous: heterozygous: autosomal: sex-linked: WLHS / Biology / Unit 6 Genetics / Monson Name Date Per 1) Compare the processes of MITOSIS and MEIOSIS: How many daughter cells are produced? If the parent cell has 22 chromosomes, how many chromosomes

More information

Mendelian Genetics Using Drosophila melanogaster Biology 12, Investigation 1

Mendelian Genetics Using Drosophila melanogaster Biology 12, Investigation 1 Mendelian Genetics Using Drosophila melanogaster Biology 12, Investigation 1 Learning the rules of inheritance is at the core of all biologists training. These rules allow geneticists to predict the patterns

More information

Heredity. Heredity is the passing of traits from parent to

Heredity. Heredity is the passing of traits from parent to Genetics Heredity Heredity is the passing of traits from parent to offspring. How do the traits get passed? Chromosomes contain genes. Different forms of the same gene are called alleles lleles Example

More information

Mendelian Inheritance Practice Problems

Mendelian Inheritance Practice Problems Name: Period: Mendelian Inheritance Practice Problems Team Problem 1 2. 3. Team Problem 2 2. Team Problem 3 Team Problem 4 Mendelian Inheritance Monohybrid Practice Problems In cats, long hair is recessive

More information

Determining the Inheritance Patterns of Purple Eye, Lobe Eye, and Yellow Body Traits of. Drosophilia Flies. Introduction

Determining the Inheritance Patterns of Purple Eye, Lobe Eye, and Yellow Body Traits of. Drosophilia Flies. Introduction Karen Jacques and Audrey Puleio Mrs. Lajoie Honors Biology April 30, 2012 Determining the Inheritance Patterns of Purple Eye, Lobe Eye, and Yellow Body Traits of Drosophilia Flies Introduction This experiment

More information

1 st Type basic vocabulary and setting up Punnett Squares:

1 st Type basic vocabulary and setting up Punnett Squares: Genetics Punnett Square Review Questions Work booklet Name: There are several types of questions that involve the use of Punnett Squares in this unit. Here s the break down or summary of those problems.

More information

Genetics Worksheet. Name

Genetics Worksheet. Name Genetics Worksheet Name Section A: Vocabulary 1. Identify if the alleles are homozygous (Ho) or heterozygous (He). a. DD b. Ee c. tt d. Hh 2. For each genotype below, determine the phenotype. a. Purple

More information

Mendelian Genetics Part 4: Dihybrid Cross

Mendelian Genetics Part 4: Dihybrid Cross Mendelian Genetics Part 4: Dihybrid Cross Name Terms and Explanations Explain the following terms and concepts, using both a diagram and an explanation in sentences or statements: Monohybrid cross Meiosis

More information

Mendelian Genetics and Punnett Squares 5/07 Integrated Science 2 Redwood High School Name: Period:

Mendelian Genetics and Punnett Squares 5/07 Integrated Science 2 Redwood High School Name: Period: Mendelian Genetics and Punnett Squares 5/07 Integrated Science 2 Redwood High School Name: Period: Background Monohybrid crosses are crosses in which only one characteristic/trait is considered. For example,

More information

LAB : PAPER PET GENETICS. male (hat) female (hair bow) Skin color green or orange Eyes round or square Nose triangle or oval Teeth pointed or square

LAB : PAPER PET GENETICS. male (hat) female (hair bow) Skin color green or orange Eyes round or square Nose triangle or oval Teeth pointed or square Period Date LAB : PAPER PET GENETICS 1. Given the list of characteristics below, you will create an imaginary pet and then breed it to review the concepts of genetics. Your pet will have the following

More information

Topic: Traits, Genes, & Alleles. Essential Question: How are an organism s traits connected to its genes?

Topic: Traits, Genes, & Alleles. Essential Question: How are an organism s traits connected to its genes? Topic: Traits, Genes, & Alleles Essential Question: How are an organism s traits connected to its genes? The problem with the gene pool is that there is no lifeguard. - Steven Wright 2/16/16 Genetics Mendel

More information

Next Wednesday declaration of invasive species due I will have Rubric posted tonight Paper is due in turnitin beginning of class 5/14/1

Next Wednesday declaration of invasive species due I will have Rubric posted tonight Paper is due in turnitin beginning of class 5/14/1 Next Wednesday declaration of invasive species due I will have Rubric posted tonight Paper is due in turnitin beginning of class 5/14/1 4/13. Warm-up What is the difference between mrna and trna: mrna

More information

Question 3 (30 points)

Question 3 (30 points) Question 3 (30 points) You hope to use your hard-won 7.014 knowledge to make some extra cash over the summer, so you adopt two Chinchillas to start a Chinchilla breeding business. Your Chinchillas are

More information

Please keep all extra notes and practice problems neatly organized in your notebook so that may reference them as needed This information is covered

Please keep all extra notes and practice problems neatly organized in your notebook so that may reference them as needed This information is covered Please keep all extra notes and practice problems neatly organized in your notebook so that may reference them as needed This information is covered in 6.3, 6.4, 6.5 and chapter 7 of your textbook Study

More information

Genetics Review Name: Block:

Genetics Review Name: Block: Genetics Review Name: Block: Part 1: One Trait Crosses 1. Describe the genotypes below using vocabulary terms given in class. a. DD: b. Dd: c. dd: 2. In humans, brown eye color (B) is dominant over blue

More information

Biology 120 Lab Exam 2 Review

Biology 120 Lab Exam 2 Review Biology 120 Lab Exam 2 Review Student Learning Services and Biology 120 Peer Mentors Sunday, November 26 th, 2017 4:00 pm Arts 263 Important note: This review was written by your Biology Peer Mentors (not

More information

Lesson Overview. Human Chromosomes. Lesson Overview Human Chromosomes

Lesson Overview. Human Chromosomes. Lesson Overview Human Chromosomes Lesson Overview 14.1 Karyotypes To find what makes us uniquely human, we have to explore the human genome. A genome is the full set of genetic information that an organism carries in its DNA. A study of

More information

Punnett Squares. and Pedigrees. How are patterns of inheritance studied? Lesson ESSENTIAL QUESTION. J S7L3.b Reproduction and genetic variation

Punnett Squares. and Pedigrees. How are patterns of inheritance studied? Lesson ESSENTIAL QUESTION. J S7L3.b Reproduction and genetic variation Lesson 5 Punnett Squares and Pedigrees ESSENTIAL QUESTION How are patterns of inheritance studied? By the end of this lesson, you should be able to explain how patterns of heredity can be predicted by

More information

Homework Packet. Interactive Notebook. Unit Assessments. Exam-Genetics 100. Lab-Baby Reebops 25. Project: Genetic Disorders Planner 35

Homework Packet. Interactive Notebook. Unit Assessments. Exam-Genetics 100. Lab-Baby Reebops 25. Project: Genetic Disorders Planner 35 NAME PERIOD Points Homework Packet Principles of Heredity 2 Chromosome Mapping 2 Probability and Activities (#1-11) 2 Simple Genetics Problem (#12-15) 2 Practice Crosses (#16-24) 2 Dihybrid: You Try Problems

More information

Sex-linked/incomplete dominance/codominance quiz

Sex-linked/incomplete dominance/codominance quiz 1. What is the difference between genotype and phenotype? a. Genotype is the physical characteristics; phenotype is the genetic make-up. b. Genotype is the genetic make-up; phenotype is the physical characteristics.

More information

DO NOT WRITE ON THIS TEST Unit 6 Assessment Genetics Objective 3.2.2

DO NOT WRITE ON THIS TEST Unit 6 Assessment Genetics Objective 3.2.2 DO NOT WRITE ON THIS TEST Unit 6 Assessment Objective 3.2.2 Vocabulary Matching + 1 point each 1. dominant 2. recessive 3. genotype 4. phenotype 5. heterozygous 6. homozygous 7. incomplete dominance 8.

More information

Genetics Extra Practice Show all work!

Genetics Extra Practice Show all work! Name: # Date: Per: Genetics Extra Practice Show all work! Monohybrids 1. A cross between two pea plants hybird for a single trait produces 60 offspring. Approximately how many of the offspring would be

More information

B- indicates dominant phenotype

B- indicates dominant phenotype BIO 208 Genetics 2011 1 Applied Human Genetics Pedigree Analysis Monohybrid Cross Dihybrid Cross Chi Square Analysis Probability Epistasis I. Applied Human Genetics/Single Gene Traits The classical study

More information

The Rest of the Story. Fine Points of Mendelian Genetics. Alleles don t necessarily come in two forms only! The Rest of the Story 3/9/11

The Rest of the Story. Fine Points of Mendelian Genetics. Alleles don t necessarily come in two forms only! The Rest of the Story 3/9/11 Fine Points of Mendelian Genetics illustrated copiously, primarily with examples of Felis domesticus plagiarized from web pages too numerous to count The Rest of the Story Mendel announced his findings

More information

7. Describe the following with words and give an example: Heterozygous, homozygous recessive, homozygous dominant

7. Describe the following with words and give an example: Heterozygous, homozygous recessive, homozygous dominant Name: Genetics UNIT EXAM Review Below are review questions for each of the 5 learning goals we have addressed during this unit. This is the majority of the science content we covered. However, as a disclaimer

More information

Punnett square practice Honors KEY

Punnett square practice Honors KEY Punnett square practice Honors KEY 1) Yellow seeds are dominant over recessive green seeds. Cross a homozygous dominant yellow seeded-plant with a green-seeded plant. What are the odds of getting a plant

More information

Questions from last week. You have a mouse with red eyes and a mouse with blue eyes. How could you determine which is the dominant trait?

Questions from last week. You have a mouse with red eyes and a mouse with blue eyes. How could you determine which is the dominant trait? Questions from last week You have a mouse with red eyes and a mouse with blue eyes. How could you determine which is the dominant trait? Mouse Eyes Without knowing anything about the parents you ll need

More information

Name Date Hour Table # 1i1iPunnett Squares

Name Date Hour Table # 1i1iPunnett Squares 1i1iPunnett Squares A Punnett square is a chart which shows/predicts all possible gene combinations in a cross of parents (whose genes are known). Punnett squares are named for an English geneticist, Reginald

More information

Independent Practice: Red throated booby bird R = red throat r = white throat. 1. Cross RR with rr. 2. Cross Rr with RR.

Independent Practice: Red throated booby bird R = red throat r = white throat. 1. Cross RR with rr. 2. Cross Rr with RR. Using Punnett Squares (Use with the Weblink Baby Steps Through Punnett Squares. ) Guided Practice: T = tall t = short Independent Practice: Red throated booby bird R = red throat r = white throat 1. Cross

More information

Chromosome Theory of Inheritance

Chromosome Theory of Inheritance Page 1 of 5 Chromosome Theory of Inheritance Proposed by: Walter Sutton and Thoeodor Boveri. (1902) What they did Studied chromosomes during the various phases of meiosis. What they found Chromosomes occur

More information

Patterns of Inheritance. What are the different ways traits can be inherited?

Patterns of Inheritance. What are the different ways traits can be inherited? Patterns of Inheritance What are the different ways traits can be inherited? Review: Patterns of Inheritance we know already 1. Autosomal dominant: If an individual is heterozygous, only one allele is

More information

Understandings, Applications and Skills (This is what you maybe assessed on)

Understandings, Applications and Skills (This is what you maybe assessed on) 3. Genetics 3.4 Inheritance Name: Understandings, Applications and Skills (This is what you maybe assessed on) Statement Guidance 3.4.U1 3.4.U2 3.4.U3 3.4.U4 3.4.U5 3.4.U6 3.4.U7 3.4.U8 3.4.U9 Mendel discovered

More information

Sex-linked Inheritance

Sex-linked Inheritance Sex-linked Inheritance Some Review: Autosomes: Non-sex chromosomes (#1-22 homologous pairs) Sex Chromosomes: Chromosome pair #23 Female XX Male X Sex Inheritance Gametes X X X XX XX X X Sex-linkage Trait

More information

Study of genes and traits and how they are passed on.

Study of genes and traits and how they are passed on. Mendel Single Trait Experiments _ Genetics _ Biology.mp4 Heredity Meet the Super Cow [www.keepvid Study of genes and traits and how they are passed on. Law of Segregation Alleles pairs separate during

More information