Evolution in Action: Graphing and Statistics

Size: px
Start display at page:

Download "Evolution in Action: Graphing and Statistics"

Transcription

1 Evolution in Action: Graphing and Statistics OVERVIEW This activity serves as a supplement to the film The Origin of Species: The Beak of the Finch and provides students with the opportunity to develop their quantitative skills by analyzing a small of data collected by Princeton University evolutionary biologists Peter and Rosemary Grant. The Grants have provided morphological measurements for a of 100 male medium ground finches (Geospiza fortis) born between the years of 1973 and 1976 on the island of Daphne Major in the Galápagos archipelago. The complete data set of 100 birds, including wing length, body mass, and beak depth, is available in the accompanying Excel spreadsheet. In this activity, students are guided through a number of exercises to analyze this of the Grants data by interpreting graphs, calculating descriptive statistics, interpreting descriptive statistics, and graphing. KEY CONCEPTS Evolution by means of natural selection can only occur if heritable traits vary among individuals in a population. Under specific environmental conditions, individuals with one form of a trait may be able to better exploit some aspects of the environment than individuals with other forms of the trait can. Natural selection involves the differential survival and reproduction of individuals with different heritable traits. Evolution occurs when inherited traits in a population change over successive generations. Scientists use graphing and statistics to summarize research data and readily identify patterns, frequency distribution and trends in the data, including in ecological and population data. STUDENT LEARNING TARGETS Analyze frequency distribution graphs (i.e., histograms) and identify and describe patterns in data representing the distributions of beak depth measurements in two groups of finches. Propose hypotheses to explain the trends illustrated in the graphs, based on an understanding of natural selection. Use descriptive statistics (mean and standard deviation) to compare and contrast two sets of similar data. Construct scientific explanations using data in graphs as evidence for how and why some characteristics may be adaptive in certain environments. Explain the importance of size for drawing conclusions about a population. Graph primary research data to compare two populations and appropriately label all graph components, including title, axes, units, and legend. Identify the adaptive traits that are most important to survival under specific environmental conditions. CURRICULUM CONNECTIONS Standards Curriculum Connection NGSS (2013) HS-LS2-2, HS-LS4-3, HS-LS4-4 AP Bio (2015) 1.A.1, 1.A.4, SP1, SP2 IB Bio (2016) 5.2, C.1, C.5 AP Env Sci (2013) II.A, II.C, III.A IB Env Systems and Societies (2017) 1.2, 2.1 Common Core (2010) ELA.RST , ELA.WHST ; Math.F-IF.7, S-ID.1, S-IC.1, S-IC.3, MP1, MP2, MP5 Vision and Change (2009) CC1, CC5, DP2 The Origin of Species: Beak of the Finch Revised December Page 1 of 7

2 KEY TERMS evolution, evolution of populations, natural selection, scientific process, speciation, statistics and math TIME REQUIREMENTS One 50-min classroom period. Homework may be required. Viewing the short film (15 min) prior to the activity is highly recommended; it can be viewed at the beginning of class prior to starting the activity or assigned as homework. SUGGESTED AUDIENCE High School: Standard, Honors, IB or AP Biology College: Introductory Biology, Ecology or Evolution course PRIOR KNOWLEDGE How to construct bar graphs Basic knowledge of descriptive statistics (mean, variance, standard deviation) Basic understanding of making and justifying claims using experimental evidence General understanding of genetic and evolutionary theory, including concepts like adaptation, fitness, and natural selection. MATERIALS Scientific calculator and graphing paper or a computer with a spreadsheet program like Excel or Google spreadsheet Colored pencils for graphing if not using a computer Ruler for graphing if not using a computer TEACHING TIPS It is highly recommended for students to view the film The Beak of the Finch ( before doing this activity, either in class or as homework the day before. You may modify this activity by having students construct the graphs provided in Part B using the data in the accompanying Excel spreadsheets. This activity was designed to be modular. You may choose to do just one part, two, or all three. You may also choose to do parts of this activity and parts of the related activity Evolution in!ction: Statistical!nalysis; For additional background information on the Grants work, consult the In-Depth Film Guide available at You may also consider having students read the background section of the In-Depth Guide. PROCEDURE PART A: After students have watched the film, show them the data in the accompanying Excel activity and explain what the data represents. Lead a brief class discussion about the data: Ask students to identify some trends and patterns they see in the data. Are all the birds of similar size? What measurements seem to vary the most from individual to individual? Why do you think the only includes adult birds? Do you see any differences between the group of finches that only lived until 1977 and the finches that lived to 1978 and beyond? The Origin of Species: Beak of the Finch Revised December Page 2 of 7

3 This is a of only 100 birds, but we know from the film that the Grants collected data on almost the entire population of medium ground finches on Daphne Major. Most researchers typically collect data from s rather than the entire population. Why do you think that is? What are some advantages and disadvantages of using s in research? Note: The birds in this data set consist of a mix of males, females, and birds of undetermined sex. Once students have had a chance to explore the data set and ask questions about it, have them answer the questions in the Student Handout. Answers to those questions are provided below. ANSWER KEY PART B: Analyzing Graphical Data Beak Depths of 50 Medium Ground Finches That Did Not Survive the Drought Beak Depths of 50 Medium Ground Finches That Survived the Drought Figure 1. The two graphs above show the beak depths, measured in mm, of 100 medium ground finches from Daphne Major. Fifty birds did not survive the drought of 1977 (top graph). The other 50 birds survived the drought and were still alive in 1978 (bottom graph). 1. a. What observations can you make about the overall shape of each graph? (Imagine that you are drawing a line that connects the tops of the horizontal bars.) Page 3 of 7

4 Students should indicate that the shapes of the distributions look like bell curves or hills. Some students may also know that this is a normal distribution. b. What do the shapes of the two graphs indicate about the distribution of beak depth measurements in these two groups of medium ground finches? The shapes of the graphs reveal that there is variability in the beak depth trait among the birds and that most birds have beak depth measurements that cluster around the mean. 2. Compare the distribution of beak depths between survivors and non-survivors. In your answer, include the shape of the distributions, the range of the data, and the most common measurements. Both survivors and non-survivors have similar shapes of distributions for the beak depth measurements; however, the distributions are shifted in the two graphs. The range of beak depths for the non-surviving birds was between 7.25 mm and mm, and more than half of the non-surviving birds had beak depths between 8.5 mm and 9.5 mm. The most common beak depths for the non-surviving birds were 8.5 mm and 9 mm. By contrast, beak depths of the birds that survived the drought ranged from 8.0 mm to mm, more than half the birds had beak depths between 9.5 mm and 10.5 mm, and the most common beak depth in the 1978 population was 10 mm. 3. Based on what you saw in the film, think about how changes in the environment may have affected which birds survived the drought. Propose a hypothesis to explain differences in the distribution of beak depths between survivors and non-survivors. Answers may vary, but expect students to remember enough of the film to explain that the change in food source for the birds during the drought from small, soft seeds to large, hard seeds may have selected for birds with larger beak depths. s with larger beaks were better able to use these large seeds as food (i.e., they were better adapted) than were birds with smaller beaks. 4. Let s look in more detail at the mean beak depths in the two groups of birds to understand the meaning of standard deviation. a. How do the mean beak depths and standard deviations of the mean beak depths compare? The mean beak depth for the non-surviving birds was 9.11 mm, whereas the mean beak depth for the surviving birds was 9.67 mm, an increase of approximately 6%. The standard deviations for the two groups were nearly the same: 0.88 and 0.84 for the non-surviving birds and surviving birds, respectively. b. If the standard deviations of the two s were vastly different, what would you conclude about the two groups? If two data sets have similar standard deviations, it means that the two data sets have the same amount of variability compared to the mean of each data set. In other words, the data are equally spread out. If the standard deviations are different, the data set with the larger standard deviation has more variability compared to its mean. In other words, the data points in the data set with the larger standard deviation are more spread out than the data points in the data set with the smaller standard deviation; each measurement agrees more closely with the mean for the data set. Page 4 of 7

5 PART C: Examining the Importance of Sample Size Table 1. Beak Depths in Two Samples of Finches That Did Not Survive the Drought and Two Samples That Did Non-survivors Survivors 5-finch 15-finch 5-finch 15-finch Beak Depth Beak Depth Beak Depth Beak Depth Mean 8.78 Mean 9.11 Mean 9.78 Mean 9.56 s 1.15 s 0.98 s 1.06 s For each, calculate the mean beak depth and standard deviation (s) and add those numbers to the tables. 6. Record the means and standard deviations for each of survivors and non-survivors in Figure 1 from Part B (50 birds) and Table 1 in Part C (5 and 15 birds) in Table 2 below. Table 2. Mean Beak Depths for 50-, 15-, and 5-Finch Samples of s That Survived and Did Not Survive the Drought Mean Standard deviation 50-finch 15-finch 5-finch 50-finch 15-finch 5-finch Non-survivors 9.11 mm 9.11 mm 8.78 mm 0.88 mm 0.98 mm 1.15 mm Survivors 9.67 mm 9.56 mm 9.78 mm 0.84 mm 0.90 mm 1.06 mm 7. Compare the mean and standard deviation for each size (5 birds, 15 birds, and 50 birds) within each group of survivors and non-survivors. a. Are the means in smaller s different from the means in larger s? Explain your answer. Page 5 of 7

6 Except for the non-survivor size of 15, none of the means match the mean beak depths of the 50-bird s. The means are different because each set of birds was randomly selected from the larger group, and since there is significant variation in beak depth in the population it is unlikely that the mean of any smaller will match the mean of the larger group. b. Are the standard deviations in smaller s different from the standard deviations in larger s? Explain your answer. In this example, the standard deviations of both groups of birds decrease with increased size. Students explanations will vary and may reveal a misunderstanding of how standard deviation responds to size. Standard deviation is a measure of the amount of variation in a population. Some students may say that standard deviation increases with a smaller size, but standard deviation can increase or decrease with a smaller size because of sampling the chance of having a that does not accurately represent the entire population. (Standard error, on the other hand, tends to increase with smaller sizes.) 8. Which results (i.e., from 5, 15, or 50 birds) do you think are closer to the means and standard deviations of the entire population of medium ground finches on the whole island? Explain your answer. Students should indicate that in general, the larger s should provide means and standard deviation values that are closer to those of the population as a whole. 9. What is one advantage and one disadvantage of calculating the mean from a of a population rather than the entire population? Advantages may include lower cost and less time; it is usually not feasible to collect data on an entire population if the population is large and spread out. One disadvantage is that the data obtained from a may not be reflective of the population as a whole. PART D: Adaptive Traits and Constructing Graphs 10. In the space below, construct two bar graphs showing the mean values for wing length for the two groups of birds on one graph and mean values for body mass for the two groups of birds on the other. Title your two graphs and label your axes. Mean wing length for medium ground finches that did Mean body mass for medium ground finches that did not survive the 1977 drought (non-survivors) and those not survive the 1977 drought (non-survivors) and that did survive the drought (survivors) those that did survive the drought (survivors) Page 6 of 7

7 11. Based on the graphs you have drawn, how does wing length compare between survivors and non-survivors? What about body mass? The surviving medium ground finches had slightly longer wings and slightly larger body masses than medium ground finches that did not survive the drought of What do the results illustrated by your graphs indicate about the effects of the drought on birds with particular wing lengths and body masses? The results suggest that it may have been an advantage during the drought to have a larger body mass and longer wings. Students may also point out that larger birds probably also have larger wings and larger beaks, and are thus more likely to survive. 13. The Grants say in the film that a key trait that made the difference in survival for the birds during the drought was beak depth. Is that conclusion consistent with the data presented in this activity (including Part B)? Explain your answer. Beak depth was larger for the surviving birds compared to the birds that did not survive. However, body mass and wing length were also larger among survivors. It could be that larger beaked birds simply have larger body masses and longer wings. All three traits could be important in survival. 14. Explain why the Grants concluded that beak depth may have played a more important role in survival during the drought than wing length or body mass. Correctly use the terms natural selection, adaptation, and fitness in your answer. The major environmental change caused by the drought was a change in food source. The larger beaks of some medium ground finches became advantageous when the small, soft seeds disappeared and only large, hard seeds remained. s with larger beaks were able to use large, hard seeds as a food source and were therefore more likely to survive the drought and reproduce than were birds with smaller beaks. Therefore, large-beaked birds were more fit than small-beaked birds. Because the survival challenge posed by the 1977 drought had to do with a change in the food supply, natural selection probably acted primarily on beak depth, not wing length or body mass. An explanation for why wing length and body mass were also greater for surviving birds may be that birds with larger beaks were also larger overall they had longer wings and were heavier than birds with smaller beaks. Students may also indicate that having a larger body mass may have helped birds withstand lack of food better than birds with smaller body mass. 15. Explain the role of variation in important traits (like beak depth) in a population for the survival of a species. Students should indicate in their own words that variation among individuals in important traits like beak depth makes it more likely that at least one form of the trait will be good enough for individuals to successfully survive a change in their environment. AUTHOR Paul Strode, PhD, Fairview High School, Boulder, Colorado Edited by Laura Bonetta, PhD, HHMI, and Ann Brokaw, Rocky River High School, Ohio Reviewed by Brad Williamson, University of Kansas; Peter Grant, PhD, and Rosemary Grant, PhD, Princeton University Page 7 of 7

EVOLUTION IN ACTION: GRAPHING AND STATISTICS

EVOLUTION IN ACTION: GRAPHING AND STATISTICS EVOLUTION IN ACTION: GRAPHING AND STATISTICS INTRODUCTION Relatively few researchers have been able to witness evolutionary change in their lifetimes; among them are Peter and Rosemary Grant. The short

More information

LOOK WHO S COMING FOR DINNER: SELECTION BY PREDATION

LOOK WHO S COMING FOR DINNER: SELECTION BY PREDATION LOOK WHO S COMING FOR DINNER: SELECTION BY PREDATION OVERVIEW This activity serves as a supplement to the film The Origin of Species: Lizards in an Evolutionary Tree. It is based on a year-long predation

More information

The Making of the Fittest: Natural Selection and Adaptation

The Making of the Fittest: Natural Selection and Adaptation BEAKS AS TOOLS: SELECTIVE ADVANTAGE IN CHANGING ENVIRONMENTS INTRODUCTION Peter and Rosemary Grant s pioneering work on the Galápagos Island finches has given us a unique insight into how species evolve

More information

Beaks as Tools: Selective Advantage in Changing Environments

Beaks as Tools: Selective Advantage in Changing Environments Beaks as Tools: Selective Advantage in Changing Environments OVERVIEW Peter and Rosemary Grant s pioneering work on the Galápagos finches has given us a unique insight into how species evolve over generations.

More information

Natural Selection and the Evolution of Darwin s Finches. Activity Student Handout

Natural Selection and the Evolution of Darwin s Finches. Activity Student Handout Natural Selection and the Evolution of Darwin s Finches INTRODUCTION There are 13 different species of finch on the Galápagos Islands off the coast of Ecuador. On one of the islands, Daphne Major, biologists

More information

The Origin of Species: The Beak of the Finch

The Origin of Species: The Beak of the Finch The Origin of Species: The Beak of the Finch OVERVIEW The Beak of the Finch is one of three films in HHMI s Origin of Species collection. Naturalists from Charles Darwin to E. O. Wilson have marveled at

More information

Biology. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall Biology 1 of 33 16-3 The Process of 16-3 The Process of Speciation Speciation 2 of 33 16-3 The Process of Speciation Natural selection and chance events can change the relative frequencies of alleles in

More information

The Origin of Species: Lizards in an Evolutionary Tree

The Origin of Species: Lizards in an Evolutionary Tree The Origin of Species: Lizards in an Evolutionary Tree NAME DATE This handout supplements the short film The Origin of Species: Lizards in an Evolutionary Tree. 1. Puerto Rico, Cuba, Jamaica, and Hispaniola

More information

Student Exploration: Rainfall and Bird Beaks

Student Exploration: Rainfall and Bird Beaks Name: Date: Student Exploration: Rainfall and Bird Beaks Vocabulary: adaptation, beak depth, directional selection, drought, evolution, natural selection, range, stabilizing selection Prior Knowledge Questions

More information

Lab 7. Evolution Lab. Name: General Introduction:

Lab 7. Evolution Lab. Name: General Introduction: Lab 7 Name: Evolution Lab OBJECTIVES: Help you develop an understanding of important factors that affect evolution of a species. Demonstrate important biological and environmental selection factors that

More information

Biol 160: Lab 7. Modeling Evolution

Biol 160: Lab 7. Modeling Evolution Name: Modeling Evolution OBJECTIVES Help you develop an understanding of important factors that affect evolution of a species. Demonstrate important biological and environmental selection factors that

More information

Beak Of Finches Lab Answer Key

Beak Of Finches Lab Answer Key BEAK OF FINCHES LAB ANSWER KEY PDF - Are you looking for beak of finches lab answer key Books? Now, you will be happy that at this time beak of finches lab answer key PDF is available at our online library.

More information

Pre-lab Homework Lab 8: Natural Selection

Pre-lab Homework Lab 8: Natural Selection Lab Section: Name: Pre-lab Homework Lab 8: Natural Selection 1. This week's lab uses a mathematical model to simulate the interactions of populations. What is an advantage of using a model like this over

More information

Mendelian Genetics Using Drosophila melanogaster Biology 12, Investigation 1

Mendelian Genetics Using Drosophila melanogaster Biology 12, Investigation 1 Mendelian Genetics Using Drosophila melanogaster Biology 12, Investigation 1 Learning the rules of inheritance is at the core of all biologists training. These rules allow geneticists to predict the patterns

More information

The Origin of Species: Lizards in an Evolutionary Tree

The Origin of Species: Lizards in an Evolutionary Tree The Origin of Species: Lizards in an Evolutionary Tree OVERVIEW Lizards in an Evolutionary Tree is one of three films in HHMI s Origin of Species collection. This film describes how the more than 700 islands

More information

Comparing DNA Sequences to Understand Evolutionary Relationships with BLAST

Comparing DNA Sequences to Understand Evolutionary Relationships with BLAST Comparing DNA Sequences to Understand Evolutionary Relationships with BLAST INVESTIGATION 3 BIG IDEA 1 Lab Investigation 3: BLAST Pre-Lab Essential Question: How can bioinformatics be used as a tool to

More information

Evolution. Geology. Objectives. Key Terms SECTION 2

Evolution. Geology. Objectives. Key Terms SECTION 2 SECTION 2 Evolution Organisms tend to be well suited to where they live and what they do. Figure 7 shows a chameleon (kuh MEEL ee uhn) capturing an insect. Insects are not easy to catch, so how does the

More information

Survivor: A Game of Traits and Natural Selection VINSE/VSVS Rural

Survivor: A Game of Traits and Natural Selection VINSE/VSVS Rural Survivor: A Game of Traits and Natural Selection 2018-2019 VINSE/VSVS Rural IA. Introduction Why is Charles Darwin so important? Concluded that organisms changed over time to better survive in their specific

More information

Chapter 16: Evolution Lizard Evolution Virtual Lab Honors Biology. Name: Block: Introduction

Chapter 16: Evolution Lizard Evolution Virtual Lab Honors Biology. Name: Block: Introduction Chapter 16: Evolution Lizard Evolution Virtual Lab Honors Biology Name: Block: Introduction Charles Darwin proposed that over many generations some members of a population could adapt to a changing environment

More information

Phenotypic and Genetic Variation in Rapid Cycling Brassica Parts III & IV

Phenotypic and Genetic Variation in Rapid Cycling Brassica Parts III & IV 1 Phenotypic and Genetic Variation in Rapid Cycling Brassica Parts III & IV Objective: During this part of the Brassica lab, you will be preparing to breed two populations of plants. Both will be considered

More information

Adaptations: Changes Through Time

Adaptations: Changes Through Time Your web browser (Safari 7) is out of date. For more security, comfort and Activitydevelop the best experience on this site: Update your browser Ignore Adaptations: Changes Through Time How do adaptations

More information

Reading Science! Name: Date: Darwin s Fancy with Finches Lexile 1190L

Reading Science! Name: Date: Darwin s Fancy with Finches Lexile 1190L 7.11/.12: daptation of Species Name: ate: arwin s Fancy with Finches Lexile 1190L 1 2 Whales are mammals that live in water and can hold their breath underwater for a long time, yet need to breathe air

More information

Call of the Wild. Investigating Predator/Prey Relationships

Call of the Wild. Investigating Predator/Prey Relationships Biology Call of the Wild Investigating Predator/Prey Relationships MATERIALS AND RESOURCES EACH GROUP calculator computer spoon, plastic 100 beans, individual pinto plate, paper ABOUT THIS LESSON This

More information

The Making of the Fittest: LESSON STUDENT MATERIALS USING DNA TO EXPLORE LIZARD PHYLOGENY

The Making of the Fittest: LESSON STUDENT MATERIALS USING DNA TO EXPLORE LIZARD PHYLOGENY The Making of the Fittest: Natural The The Making Origin Selection of the of Species and Fittest: Adaptation Natural Lizards Selection in an Evolutionary and Adaptation Tree INTRODUCTION USING DNA TO EXPLORE

More information

Darwin s Finches and Natural Selection

Darwin s Finches and Natural Selection Darwin s Finches and Natural Selection by Cheryl Heinz, Dept. of Biological Sciences, Benedictine University, and Eric Ribbens, Dept. of Biological Sciences, Western Illinois University 1 The Galapagos

More information

Darwin's Fancy with Finches Lexile 940L

Darwin's Fancy with Finches Lexile 940L arwin's Fancy with Finches Lexile 940L 1 Whales are mammals that live in water. They can hold their breath under the water for a long time, yet still need to go up to the surface to breathe. This is evidence

More information

Is it better to be bigger? Featured scientists: Aaron Reedy and Robert Cox from the University of Virginia Co-written by Matt Kustra

Is it better to be bigger? Featured scientists: Aaron Reedy and Robert Cox from the University of Virginia Co-written by Matt Kustra Is it better to be bigger? Featured scientists: Aaron Reedy and Robert Cox from the University of Virginia Co-written by Matt Kustra Research Background: When Charles Darwin talked about the struggle for

More information

Biodiversity and Distributions. Lecture 2: Biodiversity. The process of natural selection

Biodiversity and Distributions. Lecture 2: Biodiversity. The process of natural selection Lecture 2: Biodiversity What is biological diversity? Natural selection Adaptive radiations and convergent evolution Biogeography Biodiversity and Distributions Types of biological diversity: Genetic diversity

More information

Evolution on Exhibit Hints for Teachers

Evolution on Exhibit Hints for Teachers 1 Evolution on Exhibit Hints for Teachers This gallery activity explores a variety of evolution themes that are well illustrated by gallery specimens and exhibits. Each activity is aligned with the NGSS

More information

Veggie Variation. Learning Objectives. Materials, Resources, and Preparation. A few things your students should already know:

Veggie Variation. Learning Objectives. Materials, Resources, and Preparation. A few things your students should already know: page 2 Page 2 2 Introduction Goals This lesson plan was developed as part of the Darwin 2009: Exploration is Never Extinct initiative in Pittsburgh. Darwin2009 includes a suite of lesson plans, multimedia,

More information

Activity 1: Changes in beak size populations in low precipitation

Activity 1: Changes in beak size populations in low precipitation Darwin s Finches Lab Work individually or in groups of -3 at a computer Introduction The finches on Darwin and Wallace Islands feed on seeds produced by plants growing on these islands. There are three

More information

Evolution and Natural Selection. Peekskill High School Biology by: First-name Last-name

Evolution and Natural Selection. Peekskill High School Biology by: First-name Last-name Evolution and Natural Selection Peekskill High School Biology by: First-name Last-name 2 Charles Darwin Darwin explored these islands from April through October 1835. Entire voyage of The Beagle: Dec 1831

More information

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore Activityapply ADAPTIVE RADIATIO N How do species respond to environmental

More information

. see the role of the environment as a selecting agent

. see the role of the environment as a selecting agent Name Period Date Introduction Environmental conditions act as selecting agents because they select organisms with the most beneficial traits to become the parents of the next generation. Within a species,

More information

USING DNA TO EXPLORE LIZARD PHYLOGENY

USING DNA TO EXPLORE LIZARD PHYLOGENY Species The MThe aking of the offittest: The Making of the Fittest: in anand Natural Selection Adaptation Tree Natural Selection and Adaptation USING DNA TO EXPLORE LIZARD PHYLOGENY OVERVIEW This lesson

More information

2 How Does Evolution Happen?

2 How Does Evolution Happen? CHAPTER 10 2 How Does Evolution Happen? SECTION The Evolution of Living Things 7.3.b California Science Standards BEFORE YOU READ After you read this section, you should be able to answer these questions:

More information

Veggie Variation. Learning Objectives. Materials, Resources, and Preparation. A few things your students should already know:

Veggie Variation. Learning Objectives. Materials, Resources, and Preparation. A few things your students should already know: page 2 Page 2 2 Introduction Goals Discover Darwin all over Pittsburgh in 2009 with Darwin 2009: Exploration is Never Extinct. Lesson plans, including this one, are available for multiple grades on-line

More information

Darwin s Finches: A Thirty Year Study.

Darwin s Finches: A Thirty Year Study. Darwin s Finches: A Thirty Year Study. I. Mit-DNA Based Phylogeny (Figure 1). 1. All Darwin s finches descended from South American grassquit (small finch) ancestor circa 3 Mya. 2. Galapagos colonized

More information

2013 Holiday Lectures on Science Medicine in the Genomic Era

2013 Holiday Lectures on Science Medicine in the Genomic Era INTRODUCTION Figure 1. Tasha. Scientists sequenced the first canine genome using DNA from a boxer named Tasha. Meet Tasha, a boxer dog (Figure 1). In 2005, scientists obtained the first complete dog genome

More information

Two Sets to Build Difference Edward I. Maxwell

Two Sets to Build Difference Edward I. Maxwell TwoSetstoBuildDifference Two Sets to Build Difference Edward I. Maxwell You are most basically a blend of your biological parents. Your genetic material is a combinationoftheirgeneticmaterial.ahumantypicallyhas46chromosomesthatcontainhis

More information

Darwin s. Finches. Beyond the Book. FOCUS Book

Darwin s. Finches. Beyond the Book. FOCUS Book FOCUS Book Darwin s Imagine that a new finch species has developed on one of the Galapagos Islands. It s up to you to determine what it looks like, how it behaves, and what it eats. Sketch the new finch,

More information

CHAPTER 3 MUTATION AND ADAPTIVE TRAITS

CHAPTER 3 MUTATION AND ADAPTIVE TRAITS CHAPTER 3 MUTATION AND ADAPTIVE TRAITS 3.3.1 WARM-UP Reread the story below and then respond to the question. Why did the mutation that resulted in a long-hair trait in these rabbits become more common

More information

1. We have been learning about natural selec+on. Write down AT LEAST two facts you can remember about it.

1. We have been learning about natural selec+on. Write down AT LEAST two facts you can remember about it. Warm up (3 minutes) 1. Pick up a warm up 2. Pick up the student work from the front table 3. Pick up your binder in the filing cabinet 4. Complete the warm up 1. We have been learning about natural selec+on.

More information

Evolution of Birds. Summary:

Evolution of Birds. Summary: Oregon State Standards OR Science 7.1, 7.2, 7.3, 7.3S.1, 7.3S.2 8.1, 8.2, 8.2L.1, 8.3, 8.3S.1, 8.3S.2 H.1, H.2, H.2L.4, H.2L.5, H.3, H.3S.1, H.3S.2, H.3S.3 Summary: Students create phylogenetic trees to

More information

Mr. Bouchard Summer Assignment AP Biology. Name: Block: Score: / 20. Topic: Chemistry Review and Evolution Intro Packet Due: 9/4/18

Mr. Bouchard Summer Assignment AP Biology. Name: Block: Score: / 20. Topic: Chemistry Review and Evolution Intro Packet Due: 9/4/18 Name: Block: Score: / 20 Topic: Chemistry Review and Evolution Intro Packet Due: 9/4/18 Week Schedule Monday Tuesday Wednesday Thursday Friday In class discussion/activity NONE NONE NONE Syllabus and Course

More information

Sexy smells Featured scientist: Danielle Whittaker from Michigan State University

Sexy smells Featured scientist: Danielle Whittaker from Michigan State University Sexy smells Featured scientist: Danielle Whittaker from Michigan State University Research Background: Animals collect information about each other and the rest of the world using multiple senses, including

More information

Darwin's Theory. zone. How Do Living Things Vary? 1. Use a ruler to measure the length and width of 10 sunf10v/9 seeds. Record each measurement.

Darwin's Theory. zone. How Do Living Things Vary? 1. Use a ruler to measure the length and width of 10 sunf10v/9 seeds. Record each measurement. Darwin's Theory 'I Key Concepts What important observations did Darwin make on his voyage? What hypothesis did Darwin make to explain the differences between similar species? How does natural selection

More information

Two Sets to Build Difference Edward I. Maxwell

Two Sets to Build Difference Edward I. Maxwell TwoSetstoBuildDifference Two Sets to Build Difference Edward I. Maxwell You are most basically a blend of your biological parents. Your genetic material is a combinationoftheirgeneticmaterial.ahumantypicallyhas46chromosomesthatcontainhis

More information

Do the traits of organisms provide evidence for evolution?

Do the traits of organisms provide evidence for evolution? PhyloStrat Tutorial Do the traits of organisms provide evidence for evolution? Consider two hypotheses about where Earth s organisms came from. The first hypothesis is from John Ray, an influential British

More information

Performance Task: Lizards, Lizards, Everywhere!

Performance Task: Lizards, Lizards, Everywhere! Second Grade Mathematics Unit 3 Performance Task: Lizards, Lizards, Everywhere! In this task, students measure lizards in centimeters and use the data to create a line plot. STANDARDS FOR MATHEMATICAL

More information

Macroevolution Part II: Allopatric Speciation

Macroevolution Part II: Allopatric Speciation Macroevolution Part II: Allopatric Speciation Looks Can Be Deceiving! These meadowlarks look very similar yet they are not the same species. By contrast, these brittle stars look very different from one

More information

Learn more at LESSON TITLE: BRINGING UP BIRDY GRADE LEVEL: 2-3. TIME ALLOTMENT: One to two 45-minute class periods OVERVIEW:

Learn more at   LESSON TITLE: BRINGING UP BIRDY GRADE LEVEL: 2-3. TIME ALLOTMENT: One to two 45-minute class periods OVERVIEW: LESSON TITLE: BRINGING UP BIRDY GRADE LEVEL: 2-3 TIME ALLOTMENT: One to two 45-minute class periods OVERVIEW: Students learn that living things experience diverse life cycles. For example, baby birds go

More information

Welcome to Darwin Day!

Welcome to Darwin Day! Welcome to Darwin Day! Considered to be the father of evolutionary ideas Sailed upon the HMS Beagle for 5 years around the world Gathered data and specimens from South America Galapagos Islands, as well

More information

Evolution. Evolution is change in organisms over time. Evolution does not have a goal; it is often shaped by natural selection (see below).

Evolution. Evolution is change in organisms over time. Evolution does not have a goal; it is often shaped by natural selection (see below). Evolution Evolution is change in organisms over time. Evolution does not have a goal; it is often shaped by natural selection (see below). Species an interbreeding population of organisms that can produce

More information

Chapter 22 Darwin and Evolution by Natural Selection

Chapter 22 Darwin and Evolution by Natural Selection Anaerobic Bacteria Photosynthetic Bacteria Dinosaurs Green Algae Multicellular Animals Flowering Molluscs Arthropods Chordates Jawless Fish Teleost Fish Amphibians Insects Reptiles Mammals Birds Land Plants

More information

Shooting the poop Featured scientist: Martha Weiss from Georgetown University

Shooting the poop Featured scientist: Martha Weiss from Georgetown University Research Background: Shooting the poop Featured scientist: Martha Weiss from Georgetown University Imagine walking through a forest in the middle of summer. You can hear birds chirping, a slight breeze

More information

Name Class Date. How does a founding population adapt to new environmental conditions?

Name Class Date. How does a founding population adapt to new environmental conditions? Open-Ended Inquiry Skills Lab Additional Lab 8 Ecosystems and Speciation Problem How does a founding population adapt to new environmental conditions? Introduction When the hurricane s winds died down,

More information

Bioinformatics: Investigating Molecular/Biochemical Evidence for Evolution

Bioinformatics: Investigating Molecular/Biochemical Evidence for Evolution Bioinformatics: Investigating Molecular/Biochemical Evidence for Evolution Background How does an evolutionary biologist decide how closely related two different species are? The simplest way is to compare

More information

Pete s Eats Alan s Diner Sarah s Snackbar Total Dissatisfied Satisfied Total

Pete s Eats Alan s Diner Sarah s Snackbar Total Dissatisfied Satisfied Total . Some of the customers in each café were given survey forms to complete to find out if they were satisfied with the standard of service they received. Pete s Eats Alan s Diner Sarah s Snackbar Total Dissatisfied

More information

Lab Developed: 6/2007 Lab Revised: 2/2015. Crickthermometer

Lab Developed: 6/2007 Lab Revised: 2/2015. Crickthermometer Cornell Institute for Biology Teachers 2000 Cornell Institute for Biology Teachers, Ithaca, NY 14853. Distribution of this laboratory exercise is permitted if (i) distribution is for non-profit purposes

More information

There was a different theory at the same time as Darwin s theory.

There was a different theory at the same time as Darwin s theory. Q1.Charles Darwin proposed the theory of natural selection. Many people at the time did not accept his theory. (a) There was a different theory at the same time as Darwin s theory. The different theory

More information

Naked Bunny Evolution

Naked Bunny Evolution Naked Bunny Evolution In this activity, you will examine natural selection in a small population of wild rabbits. Evolution, on a genetic level, is a change in the frequency of alleles in a population

More information

A Bird with Many Beaks

A Bird with Many Beaks A Bird with Many Beaks Diagram representing the divergence of species, from Charles Darwin s On the Origin of Species. WhenthefamousnaturalistCharlesDarwin,whohelpeddevelopthetheoryofevolution,visited

More information

Jefferson County High School Course Syllabus

Jefferson County High School Course Syllabus A. Course Large Animal Science B. Department CTE- Agriculture C. Course Description Jefferson County High School Course Syllabus Large Animal Science is an applied course in veterinary and animal science

More information

Goal: To learn about the advantages and disadvantages of variations, by simulating birds with different types of beaks competing for various foods.

Goal: To learn about the advantages and disadvantages of variations, by simulating birds with different types of beaks competing for various foods. Name Date Activity: Bird Beak Adaptation Lab Goal: To learn about the advantages and disadvantages of variations, by simulating birds with different types of beaks competing for various foods. Background

More information

The Theory of Evolution

The Theory of Evolution The Theory of Evolution Darwin Notes Pt. 2 Charles Darwin Darwin was born in 1809 in England. He was from a strong Christian family. Age 16, Darwin was sent by his father to study medicine He left and

More information

Charles Darwin. The Theory of Evolution

Charles Darwin. The Theory of Evolution The Theory of Evolution Darwin Notes Pt. 2 Charles Darwin Darwin was born in 1809 in England. He was from a strong Christian family. Age 16, Darwin was sent by his father to study medicine He left and

More information

Evolution by Natural Selection

Evolution by Natural Selection Evolution by Natural Selection 2006-2007 DOCTRINE But the Fossil record OBSERVATION Quaternary 1.5 Tertiary 63 Cretaceous 135 Jurassic 180 Triassic 225 Permian 280 Carboniferous 350 Devonian 400 Silurian

More information

Natural Selection Goldfish Crackers lab

Natural Selection Goldfish Crackers lab # Name Date Natural Selection Goldfish Crackers lab Introduction: Evolution is the change over time in the genetic makeup of a population. Natural selection is important in understanding this process,

More information

Our class had 2 incubators full of eggs. On day 21, our chicks began to hatch. In incubator #1, 1/3 of the eggs hatched. There were 2 chicks.

Our class had 2 incubators full of eggs. On day 21, our chicks began to hatch. In incubator #1, 1/3 of the eggs hatched. There were 2 chicks. Our class had 2 incubators full of eggs. On day 21, our chicks began to hatch. In incubator #1, 1/3 of the eggs hatched. There were 2 chicks. How many eggs were in the incubator before hatching? How many

More information

Title. Grade level. Time. Student Target. PART 3 Lesson: Populations. PART 3 Activity: Turtles, Turtle Everywhere! minutes

Title. Grade level. Time. Student Target. PART 3 Lesson: Populations. PART 3 Activity: Turtles, Turtle Everywhere! minutes Title PART 3 Lesson: Populations PART 3 Activity: Turtles, Turtle Everywhere! Grade level 3-5 Time 60 minutes Student Target SC.3.N.1.1 Raise questions about the natural world, investigate them individually

More information

AP Biology. AP Biology

AP Biology. AP Biology Evolution by Natural Selection 2006-2007 DOCTRINE TINTORETTO The Creation of the Animals 1550 But the Fossil record OBSERVATION mya Quaternary 1.5 Tertiary 63 Cretaceous 135 Jurassic 180 Triassic 225 Permian

More information

Name: Per. Date: 1. How many different species of living things exist today?

Name: Per. Date: 1. How many different species of living things exist today? Name: Per. Date: Life Has a History We will be using this website for the activity: http://www.ucmp.berkeley.edu/education/explorations/tours/intro/index.html Procedure: A. Open the above website and click

More information

THERE S A NEW KID IN TOWN HOW NATIVE ANOLES AVOID COMPETITION FROM INVASIVE ANOLES

THERE S A NEW KID IN TOWN HOW NATIVE ANOLES AVOID COMPETITION FROM INVASIVE ANOLES THERE S A NEW KID IN TOWN HOW NATIVE ANOLES AVOID COMPETITION FROM INVASIVE ANOLES Anolis carolinensis, commonly called the Green anole (Fig. 1), is a small lizard that lives in the southeast United States.

More information

Natural Selection Questions

Natural Selection Questions Name period date assigned date due date returned Questions Procedure Look at the shapes of the bird beaks in the chart. Under each bird s picture, give at least two things you think it might eat based

More information

King Fahd University of Petroleum & Minerals College of Industrial Management

King Fahd University of Petroleum & Minerals College of Industrial Management King Fahd University of Petroleum & Minerals College of Industrial Management CIM COOP PROGRAM POLICIES AND DELIVERABLES The CIM Cooperative Program (COOP) period is an essential and critical part of your

More information

Introduction to phylogenetic trees and tree-thinking Copyright 2005, D. A. Baum (Free use for non-commercial educational pruposes)

Introduction to phylogenetic trees and tree-thinking Copyright 2005, D. A. Baum (Free use for non-commercial educational pruposes) Introduction to phylogenetic trees and tree-thinking Copyright 2005, D. A. Baum (Free use for non-commercial educational pruposes) Phylogenetics is the study of the relationships of organisms to each other.

More information

Evolution by Natural Selection

Evolution by Natural Selection Evolution by Natural Selection 2006-2007 DOCTRINE TINTORETTO The Creation of the Animals 1550 But the Fossil record OBSERVATION Anaerobic Bacteria Photosynthetic Bacteria Dinosaurs Green Algae Multicellular

More information

Beaks Of Finches Nys Lab Answer Key

Beaks Of Finches Nys Lab Answer Key Beaks Of Finches Nys Lab Answer Key Free PDF ebook Download: Beaks Of Finches Nys Lab Answer Key Download or Read Online ebook beaks of finches nys lab answer key in PDF Format From The Best User Guide

More information

Inferring SKILLS INTRODUCTION

Inferring SKILLS INTRODUCTION SKILLS INTRODUCTION Inferring Have you ever come home, smelled fish cooking, and thought, We re having fish for dinner? You made an observation using your sense of smell and used past experience to conclude

More information

Factors such as natural selection and chance events can

Factors such as natural selection and chance events can Section 16 3 1 FOCUS Objectives 16.3.1 Identify the condition necessary for a new species to evolve. 16.3.2 Describe the process of speciation in the alápagos finches. Vocabulary Preview Introduce students

More information

The Galapagos Islands: Crucible of Evolution.

The Galapagos Islands: Crucible of Evolution. The Galapagos Islands: Crucible of Evolution. I. The Archipelago. 1. Remote - About 600 miles west of SA. 2. Small (13 main; 6 smaller); arid. 3. Of recent volcanic origin (5-10 Mya): every height crowned

More information

Effects of Natural Selection

Effects of Natural Selection Effects of Natural Selection Lesson Plan for Secondary Science Teachers Created by Christine Taylor And Mark Urban University of Connecticut Department of Ecology and Evolutionary Biology Funded by the

More information

Animal Traits and Behaviors that Enhance Survival. Copyright 2010:PEER.tamu.edu

Animal Traits and Behaviors that Enhance Survival. Copyright 2010:PEER.tamu.edu Animal Traits and Behaviors that Enhance Survival Copyright 2010:PEER.tamu.edu What We Are Going To Learn: What are traits? Inherited vs. Learned Response to stimuli Evolutionary Adaptations Natural Selection

More information

Living Dinosaurs (3-5) Animal Demonstrations

Living Dinosaurs (3-5) Animal Demonstrations Living Dinosaurs (3-5) Animal Demonstrations At a glance Students visiting the zoo will be introduced to live animals and understand their connection to a common ancestor, dinosaurs. Time requirement One

More information

Planet of Life: Creatures of the Skies & When Dinosaurs Ruled: Teacher s Guide

Planet of Life: Creatures of the Skies & When Dinosaurs Ruled: Teacher s Guide Planet of Life: Creatures of the Skies & When Dinosaurs Ruled: Teacher s Guide Grade Level: 6-8 Curriculum Focus: Earth Science Lesson Duration: Three class periods Program Description Ancient creatures

More information

Kentucky Academic Standards

Kentucky Academic Standards Field Trip #6 Kentucky, the Poultry State? MAIN IDEAS Poultry and egg farming bring more money to Kentucky than any other crop or animal. Kentucky farmers choose different ways to raise their animals depending

More information

Muppet Genetics Lab. Due: Introduction

Muppet Genetics Lab. Due: Introduction Name: Block: Muppet Genetics Lab Due: _ Introduction Much is known about the genetics of Sesamus muppetis. Karyotyping reveals that Sesame Street characters have eight chromosomes: three homologous pairs

More information

Name period date assigned date due date returned. Natural Selection

Name period date assigned date due date returned. Natural Selection Name period date assigned date due date returned Experiment 1. Take the pink sheet of paper and lay it on your desk. 2. Dump some of the Ziploc bag of dots onto the white paper. 3. Spread the dots out

More information

Objectives. Materials TI-73 CBL 2. Strainer. Gravel

Objectives. Materials TI-73 CBL 2. Strainer. Gravel . Objectives Activity 16 To understand the meaning of ph To understand the effect of changes in ph and temperature on ecosystems Materials TI-73 Probing an Aquatic Ecosystem Unit-to-unit cable CBL 2 ph

More information

Title: Sources of Genetic Variation SOLs Bio 7.b.d. Lesson Objectives

Title: Sources of Genetic Variation SOLs Bio 7.b.d. Lesson Objectives Title: Sources of Genetic Variation SOLs Bio 7.b.d. Lesson Objectives Resources Materials Safety Students will understand the importance of genetic variety and evolution as genetic change. Project Wild-Through

More information

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore Activityengage HU NTERS IN THE AIR What characteristics helped pterosaurs

More information

Component 2 - Biology: Environment, evolution and inheritance

Component 2 - Biology: Environment, evolution and inheritance Please write clearly, in block capitals. Centre number Candidate number Surname Forename(s) Candidate signature ELC SCIENCE Externally-Set Assignment Marks Component 2 - Biology: Environment, evolution

More information

Patterns of heredity can be predicted.

Patterns of heredity can be predicted. Page of 6 KEY CONCEPT Patterns of heredity can be predicted. BEFORE, you learned Genes are passed from parents to offspring Offspring inherit genes in predictable patterns NOW, you will learn How Punnett

More information

Blood Type Pedigree Mystery lab

Blood Type Pedigree Mystery lab Blood Type Pedigr Mystery lab An investigative activity assessing student understanding of blood type, pedigrs, and basic inheritance patterns Created by: It s Not Rocket Science Included: 3 pages of implementation

More information

Grade 4: Too Many Cats and Dogs In-Class Lesson Plan

Grade 4: Too Many Cats and Dogs In-Class Lesson Plan Grade 4: Too Many Cats and Dogs In-Class Lesson Plan Introduction Humane education examines the relationship between animals and humans, recognizing that we share many of the same physical and emotional

More information

Evolution by Natural Selection

Evolution by Natural Selection Evolution by Natural Selection 225 Permian Seed Plants Flowering Plants Birds Land Plants Mammals Insects Reptiles Teleost Fish Amphibians Chordates Molluscs Arthropods Dinosaurs 180 Triassic Jawless Fish

More information

CLADISTICS Student Packet SUMMARY Phylogeny Phylogenetic trees/cladograms

CLADISTICS Student Packet SUMMARY Phylogeny Phylogenetic trees/cladograms CLADISTICS Student Packet SUMMARY PHYLOGENETIC TREES AND CLADOGRAMS ARE MODELS OF EVOLUTIONARY HISTORY THAT CAN BE TESTED Phylogeny is the history of descent of organisms from their common ancestor. Phylogenetic

More information

COMPARING DNA SEQUENCES TO UNDERSTAND EVOLUTIONARY RELATIONSHIPS WITH BLAST

COMPARING DNA SEQUENCES TO UNDERSTAND EVOLUTIONARY RELATIONSHIPS WITH BLAST Big Idea 1 Evolution INVESTIGATION 3 COMPARING DNA SEQUENCES TO UNDERSTAND EVOLUTIONARY RELATIONSHIPS WITH BLAST How can bioinformatics be used as a tool to determine evolutionary relationships and to

More information

COMPARING DNA SEQUENCES TO UNDERSTAND EVOLUTIONARY RELATIONSHIPS WITH BLAST

COMPARING DNA SEQUENCES TO UNDERSTAND EVOLUTIONARY RELATIONSHIPS WITH BLAST COMPARING DNA SEQUENCES TO UNDERSTAND EVOLUTIONARY RELATIONSHIPS WITH BLAST In this laboratory investigation, you will use BLAST to compare several genes, and then use the information to construct a cladogram.

More information